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Abstract

This document defines the core of the QUIC transport protocol. QUIC provides applications with
flow-controlled streams for structured communication, low-latency connection establishment,
and network path migration. QUIC includes security measures that ensure confidentiality,
integrity, and availability in a range of deployment circumstances. Accompanying documents
describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion
control algorithm.
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1. Overview
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QUIC is a secure general-purpose transport protocol. This document defines version 1 of QUIC,
which conforms to the version-independent properties of QUIC defined in [QUIC-INVARIANTS].
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QUIC is a connection-oriented protocol that creates a stateful interaction between a client and
server.

The QUIC handshake combines negotiation of cryptographic and transport parameters. QUIC
integrates the TLS handshake [TLS13], although using a customized framing for protecting
packets. The integration of TLS and QUIC is described in more detail in [QUIC-TLS]. The
handshake is structured to permit the exchange of application data as soon as possible. This
includes an option for clients to send data immediately (0-RTT), which requires some form of
prior communication or configuration to enable.

Endpoints communicate in QUIC by exchanging QUIC packets. Most packets contain frames,
which carry control information and application data between endpoints. QUIC authenticates the
entirety of each packet and encrypts as much of each packet as is practical. QUIC packets are
carried in UDP datagrams [UDP] to better facilitate deployment in existing systems and networks.

Application protocols exchange information over a QUIC connection via streams, which are
ordered sequences of bytes. Two types of streams can be created: bidirectional streams, which
allow both endpoints to send data; and unidirectional streams, which allow a single endpoint to
send data. A credit-based scheme is used to limit stream creation and to bound the amount of
data that can be sent.

QUIC provides the necessary feedback to implement reliable delivery and congestion control. An
algorithm for detecting and recovering from loss of data is described in Section 6 of [QUIC-
RECOVERY]. QUIC depends on congestion control to avoid network congestion. An exemplary
congestion control algorithm is described in Section 7 of [QUIC-RECOVERY].

QUIC connections are not strictly bound to a single network path. Connection migration uses
connection identifiers to allow connections to transfer to a new network path. Only clients are
able to migrate in this version of QUIC. This design also allows connections to continue after
changes in network topology or address mappings, such as might be caused by NAT rebinding.

Once established, multiple options are provided for connection termination. Applications can
manage a graceful shutdown, endpoints can negotiate a timeout period, errors can cause
immediate connection teardown, and a stateless mechanism provides for termination of
connections after one endpoint has lost state.

1.1. Document Structure

This document describes the core QUIC protocol and is structured as follows:

* Streams are the basic service abstraction that QUIC provides.
o Section 2 describes core concepts related to streams,

o Section 3 provides a reference model for stream states, and
o Section 4 outlines the operation of flow control.

* Connections are the context in which QUIC endpoints communicate.
o Section 5 describes core concepts related to connections,
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o Section 6 describes version negotiation,

o Section 7 details the process for establishing connections,

o Section 8 describes address validation and critical denial-of-service mitigations,
o Section 9 describes how endpoints migrate a connection to a new network path,
o Section 10 lists the options for terminating an open connection, and

o Section 11 provides guidance for stream and connection error handling.

* Packets and frames are the basic unit used by QUIC to communicate.
o Section 12 describes concepts related to packets and frames,

> Section 13 defines models for the transmission, retransmission, and acknowledgment of
data, and

o Section 14 specifies rules for managing the size of datagrams carrying QUIC packets.

* Finally, encoding details of QUIC protocol elements are described in:
o Section 15 (versions),

o Section 16 (integer encoding),

o Section 17 (packet headers),

o Section 18 (transport parameters),
o Section 19 (frames), and

o Section 20 (errors).

Accompanying documents describe QUIC's loss detection and congestion control [QUIC-
RECOVERY], and the use of TLS and other cryptographic mechanisms [QUIC-TLS].

This document defines QUIC version 1, which conforms to the protocol invariants in [QUIC-
INVARIANTS].

To refer to QUIC version 1, cite this document. References to the limited set of version-
independent properties of QUIC can cite [QUIC-INVARIANTS].

1.2. Terms and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Commonly used terms in this document are described below.

QUIC: The transport protocol described by this document. QUIC is a name, not an acronym.

Endpoint: An entity that can participate in a QUIC connection by generating, receiving, and
processing QUIC packets. There are only two types of endpoints in QUIC: client and server.

Client: The endpoint that initiates a QUIC connection.
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Server: The endpoint that accepts a QUIC connection.

QUIC packet: A complete processable unit of QUIC that can be encapsulated in a UDP datagram.
One or more QUIC packets can be encapsulated in a single UDP datagram.

Ack-eliciting packet: A QUIC packet that contains frames other than ACK, PADDING, and
CONNECTION_CLOSE. These cause a recipient to send an acknowledgment; see Section 13.2.1.

Frame: A unit of structured protocol information. There are multiple frame types, each of
which carries different information. Frames are contained in QUIC packets.

Address: When used without qualification, the tuple of IP version, IP address, and UDP port
number that represents one end of a network path.

Connection ID: An identifier that is used to identify a QUIC connection at an endpoint. Each
endpoint selects one or more connection IDs for its peer to include in packets sent towards
the endpoint. This value is opaque to the peer.

Stream: A unidirectional or bidirectional channel of ordered bytes within a QUIC connection. A
QUIC connection can carry multiple simultaneous streams.

Application: An entity that uses QUIC to send and receive data.

This document uses the terms "QUIC packets", "UDP datagrams", and "IP packets" to refer to the
units of the respective protocols. That is, one or more QUIC packets can be encapsulated in a UDP
datagram, which is in turn encapsulated in an IP packet.

1.3. Notational Conventions

Packet and frame diagrams in this document use a custom format. The purpose of this format is
to summarize, not define, protocol elements. Prose defines the complete semantics and details of
structures.

Complex fields are named and then followed by a list of fields surrounded by a pair of matching
braces. Each field in this list is separated by commas.

Individual fields include length information, plus indications about fixed value, optionality, or
repetitions. Individual fields use the following notational conventions, with all lengths in bits:
X (A): Indicates that x is A bits long

X (1): Indicates that x holds an integer value using the variable-length encoding described in
Section 16

X (A.B): Indicates that x can be any length from A to B; A can be omitted to indicate a minimum
of zero bits, and B can be omitted to indicate no set upper limit; values in this format always
end on a byte boundary
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x (L) = C: Indicates that x has a fixed value of C; the length of x is described by L, which can use
any of the length forms above

x (L) = C.D: Indicates that x has a value in the range from C to D, inclusive, with the length
described by L, as above

[x (L)]: Indicates that x is optional and has a length of L
x (L) ... Indicates that x is repeated zero or more times and that each instance has a length of L

This document uses network byte order (that is, big endian) values. Fields are placed starting
from the high-order bits of each byte.

By convention, individual fields reference a complex field by using the name of the complex
field.

Figure 1 provides an example:

Example Structure {
One-bit Field (1),
7-bit Field with Fixed Value (7) = 61,
Field with Variable-Length Integer (i),
Arbitrary-Length Field (..),
Variable-Length Field (8..24),
Field With Minimum Length (16..),
Field With Maximum Length (..128),
[Optional Field (64)],
Repeated Field (8) ...,

}

Figure 1: Example Format

When a single-bit field is referenced in prose, the position of that field can be clarified by using
the value of the byte that carries the field with the field's value set. For example, the value 0x80
could be used to refer to the single-bit field in the most significant bit of the byte, such as One-bit
Field in Figure 1.

2. Streams

Streams in QUIC provide a lightweight, ordered byte-stream abstraction to an application.
Streams can be unidirectional or bidirectional.

Streams can be created by sending data. Other processes associated with stream management --
ending, canceling, and managing flow control -- are all designed to impose minimal overheads.
For instance, a single STREAM frame (Section 19.8) can open, carry data for, and close a stream.
Streams can also be long-lived and can last the entire duration of a connection.
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Streams can be created by either endpoint, can concurrently send data interleaved with other
streams, and can be canceled. QUIC does not provide any means of ensuring ordering between
bytes on different streams.

QUIC allows for an arbitrary number of streams to operate concurrently and for an arbitrary
amount of data to be sent on any stream, subject to flow control constraints and stream limits;
see Section 4.

2.1. Stream Types and Identifiers

Streams can be unidirectional or bidirectional. Unidirectional streams carry data in one
direction: from the initiator of the stream to its peer. Bidirectional streams allow for data to be
sent in both directions.

Streams are identified within a connection by a numeric value, referred to as the stream ID. A

stream ID is a 62-bit integer (0 to 262.1) that is unique for all streams on a connection. Stream IDs
are encoded as variable-length integers; see Section 16. A QUIC endpoint MUST NOT reuse a
stream ID within a connection.

The least significant bit (0x01) of the stream ID identifies the initiator of the stream. Client-
initiated streams have even-numbered stream IDs (with the bit set to 0), and server-initiated
streams have odd-numbered stream IDs (with the bit set to 1).

The second least significant bit (0x02) of the stream ID distinguishes between bidirectional
streams (with the bit set to 0) and unidirectional streams (with the bit set to 1).

The two least significant bits from a stream ID therefore identify a stream as one of four types, as
summarized in Table 1.

Bits  Stream Type

0x00 Client-Initiated, Bidirectional
0x01 Server-Initiated, Bidirectional
0x02 Client-Initiated, Unidirectional

0x03  Server-Initiated, Unidirectional
Table 1: Stream ID Types
The stream space for each type begins at the minimum value (0x00 through 0x03, respectively);
successive streams of each type are created with numerically increasing stream IDs. A stream ID

that is used out of order results in all streams of that type with lower-numbered stream IDs also
being opened.
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2.2. Sending and Receiving Data

STREAM frames (Section 19.8) encapsulate data sent by an application. An endpoint uses the
Stream ID and Offset fields in STREAM frames to place data in order.

Endpoints MUST be able to deliver stream data to an application as an ordered byte stream.
Delivering an ordered byte stream requires that an endpoint buffer any data that is received out
of order, up to the advertised flow control limit.

QUIC makes no specific allowances for delivery of stream data out of order. However,
implementations MAY choose to offer the ability to deliver data out of order to a receiving
application.

An endpoint could receive data for a stream at the same stream offset multiple times. Data that
has already been received can be discarded. The data at a given offset MUST NOT change if it is

sent multiple times; an endpoint MAY treat receipt of different data at the same offset within a

stream as a connection error of type PROTOCOL_VIOLATION.

Streams are an ordered byte-stream abstraction with no other structure visible to QUIC. STREAM
frame boundaries are not expected to be preserved when data is transmitted, retransmitted after
packet loss, or delivered to the application at a receiver.

An endpoint MUST NOT send data on any stream without ensuring that it is within the flow
control limits set by its peer. Flow control is described in detail in Section 4.

2.3. Stream Prioritization

Stream multiplexing can have a significant effect on application performance if resources
allocated to streams are correctly prioritized.

QUIC does not provide a mechanism for exchanging prioritization information. Instead, it relies
on receiving priority information from the application.

A QUIC implementation SHOULD provide ways in which an application can indicate the relative
priority of streams. An implementation uses information provided by the application to
determine how to allocate resources to active streams.

2.4. Operations on Streams

This document does not define an API for QUIC; it instead defines a set of functions on streams
that application protocols can rely upon. An application protocol can assume that a QUIC
implementation provides an interface that includes the operations described in this section. An
implementation designed for use with a specific application protocol might provide only those
operations that are used by that protocol.
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On the sending part of a stream, an application protocol can:

o write data, understanding when stream flow control credit (Section 4.1) has successfully
been reserved to send the written data;

* end the stream (clean termination), resulting in a STREAM frame (Section 19.8) with the FIN
bit set; and

e reset the stream (abrupt termination), resulting in a RESET_STREAM frame (Section 19.4) if
the stream was not already in a terminal state.

On the receiving part of a stream, an application protocol can:

e read data; and

* abort reading of the stream and request closure, possibly resulting in a STOP_SENDING
frame (Section 19.5).

An application protocol can also request to be informed of state changes on streams, including
when the peer has opened or reset a stream, when a peer aborts reading on a stream, when new
data is available, and when data can or cannot be written to the stream due to flow control.

3. Stream States

This section describes streams in terms of their send or receive components. Two state machines
are described: one for the streams on which an endpoint transmits data (Section 3.1) and another
for streams on which an endpoint receives data (Section 3.2).

Unidirectional streams use either the sending or receiving state machine, depending on the
stream type and endpoint role. Bidirectional streams use both state machines at both endpoints.
For the most part, the use of these state machines is the same whether the stream is
unidirectional or bidirectional. The conditions for opening a stream are slightly more complex
for a bidirectional stream because the opening of either the send or receive side causes the
stream to open in both directions.

The state machines shown in this section are largely informative. This document uses stream
states to describe rules for when and how different types of frames can be sent and the reactions
that are expected when different types of frames are received. Though these state machines are
intended to be useful in implementing QUIC, these states are not intended to constrain
implementations. An implementation can define a different state machine as long as its behavior
is consistent with an implementation that implements these states.

Note: In some cases, a single event or action can cause a transition through multiple
states. For instance, sending STREAM with a FIN bit set can cause two state
transitions for a sending stream: from the "Ready" state to the "Send" state, and
from the "Send" state to the "Data Sent" state.
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3.1. Sending Stream States

Figure 2 shows the states for the part of a stream that sends data to a peer.

o
| Create Stream (Sending)
| Peer Creates Bidirectional Stream

Send STREAM /
STREAM_DATA_BLOCKED

I
I
I
I
I
R +
| Send | Send RESET_STREAM |
I [=====mmmmmmm e >|
e +
I I
| Send STREAM + FIN |
% %
to-m - + fomm - +
| Data | Send RESET_STREAM | Reset |
| SERt |oomeeorrecreccsms=s >| Sent |
to-m - + fomm - +
I I
| Recv All ACKs | Recv ACK
% %
R + R +
| Data | | Reset |
| Recvd | | Recvd |
R + R +

Figure 2: States for Sending Parts of Streams

The sending part of a stream that the endpoint initiates (types 0 and 2 for clients, 1 and 3 for
servers) is opened by the application. The "Ready" state represents a newly created stream that is
able to accept data from the application. Stream data might be buffered in this state in
preparation for sending.

Sending the first STREAM or STREAM_DATA_BLOCKED frame causes a sending part of a stream
to enter the "Send" state. An implementation might choose to defer allocating a stream ID to a
stream until it sends the first STREAM frame and enters this state, which can allow for better
stream prioritization.

The sending part of a bidirectional stream initiated by a peer (type 0 for a server, type 1 for a
client) starts in the "Ready" state when the receiving part is created.
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In the "Send" state, an endpoint transmits -- and retransmits as necessary -- stream data in
STREAM frames. The endpoint respects the flow control limits set by its peer and continues to
accept and process MAX_STREAM_DATA frames. An endpoint in the "Send" state generates
STREAM_DATA_BLOCKED frames if it is blocked from sending by stream flow control limits
(Section 4.1).

After the application indicates that all stream data has been sent and a STREAM frame
containing the FIN bit is sent, the sending part of the stream enters the "Data Sent" state. From
this state, the endpoint only retransmits stream data as necessary. The endpoint does not need to
check flow control limits or send STREAM_DATA_BLOCKED frames for a stream in this state.
MAX_STREAM_DATA frames might be received until the peer receives the final stream offset. The
endpoint can safely ignore any MAX_STREAM_DATA frames it receives from its peer for a stream
in this state.

Once all stream data has been successfully acknowledged, the sending part of the stream enters
the "Data Recvd" state, which is a terminal state.

From any state that is one of "Ready", "Send", or "Data Sent", an application can signal that it
wishes to abandon transmission of stream data. Alternatively, an endpoint might receive a
STOP_SENDING frame from its peer. In either case, the endpoint sends a RESET_STREAM frame,
which causes the stream to enter the "Reset Sent" state.

An endpoint MAY send a RESET_STREAM as the first frame that mentions a stream; this causes
the sending part of that stream to open and then immediately transition to the "Reset Sent" state.

Once a packet containing a RESET_STREAM has been acknowledged, the sending part of the
stream enters the "Reset Recvd" state, which is a terminal state.

3.2. Receiving Stream States

Figure 3 shows the states for the part of a stream that receives data from a peer. The states for a
receiving part of a stream mirror only some of the states of the sending part of the stream at the
peer. The receiving part of a stream does not track states on the sending part that cannot be
observed, such as the "Ready" state. Instead, the receiving part of a stream tracks the delivery of
data to the application, some of which cannot be observed by the sender.

Iyengar & Thomson Standards Track Page 17



RFC 9000 QUIC Transport Protocol May 2021

0

| Recv STREAM / STREAM_DATA_BLOCKED / RESET_STREAM

| Create Bidirectional Stream (Sending)

| Recv MAX_STREAM_DATA / STOP_SENDING (Bidirectional)
| Create Higher-Numbered Stream

v

I
I
I
v I
e +
| Size | Recv RESET_STREAM |
| KO [=ecccceeceocccccoonoas > |
o +
I I
| Recv All Data |
% Y%
+------- + Recv RESET_STREAM +------- +
| Data |--- (optional) --->| Reset |
| Recvd | Recv All Data | Recvd |
+ommmmoo +<-- (optional) ----+------- +
I I
| App Read All Data | App Read Reset
% v
- + - +
| Data | | Reset |
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Figure 3: States for Receiving Parts of Streams

The receiving part of a stream initiated by a peer (types 1 and 3 for a client, or 0 and 2 for a
server) is created when the first STREAM, STREAM_DATA_BLOCKED, or RESET STREAM frame is
received for that stream. For bidirectional streams initiated by a peer, receipt of a
MAX_STREAM_DATA or STOP_SENDING frame for the sending part of the stream also creates the
receiving part. The initial state for the receiving part of a stream is "Recv".

For a bidirectional stream, the receiving part enters the "Recv" state when the sending part
initiated by the endpoint (type 0 for a client, type 1 for a server) enters the "Ready" state.

An endpoint opens a bidirectional stream when a MAX_STREAM_DATA or STOP_SENDING frame
is received from the peer for that stream. Receiving a MAX_STREAM_DATA frame for an
unopened stream indicates that the remote peer has opened the stream and is providing flow
control credit. Receiving a STOP_SENDING frame for an unopened stream indicates that the
remote peer no longer wishes to receive data on this stream. Either frame might arrive before a
STREAM or STREAM_DATA_BLOCKED frame if packets are lost or reordered.

Before a stream is created, all streams of the same type with lower-numbered stream IDs MUST
be created. This ensures that the creation order for streams is consistent on both endpoints.
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In the "Recv" state, the endpoint receives STREAM and STREAM_DATA_BLOCKED frames.
Incoming data is buffered and can be reassembled into the correct order for delivery to the
application. As data is consumed by the application and buffer space becomes available, the
endpoint sends MAX_STREAM_DATA frames to allow the peer to send more data.

When a STREAM frame with a FIN bit is received, the final size of the stream is known; see
Section 4.5. The receiving part of the stream then enters the "Size Known" state. In this state, the
endpoint no longer needs to send MAX_STREAM_DATA frames; it only receives any
retransmissions of stream data.

Once all data for the stream has been received, the receiving part enters the "Data Recvd" state.
This might happen as a result of receiving the same STREAM frame that causes the transition to
"Size Known". After all data has been received, any STREAM or STREAM_DATA_BLOCKED frames
for the stream can be discarded.

The "Data Recvd" state persists until stream data has been delivered to the application. Once
stream data has been delivered, the stream enters the "Data Read" state, which is a terminal
state.

Receiving a RESET_STREAM frame in the "Recv" or "Size Known" state causes the stream to enter
the "Reset Recvd" state. This might cause the delivery of stream data to the application to be
interrupted.

It is possible that all stream data has already been received when a RESET_STREAM is received
(that is, in the "Data Recvd" state). Similarly, it is possible for remaining stream data to arrive
after receiving a RESET_STREAM frame (the "Reset Recvd" state). An implementation is free to
manage this situation as it chooses.

Sending a RESET_STREAM means that an endpoint cannot guarantee delivery of stream data;
however, there is no requirement that stream data not be delivered if a RESET_STREAM is
received. An implementation MAY interrupt delivery of stream data, discard any data that was
not consumed, and signal the receipt of the RESET_STREAM. A RESET_STREAM signal might be
suppressed or withheld if stream data is completely received and is buffered to be read by the
application. If the RESET_STREAM is suppressed, the receiving part of the stream remains in
"Data Recvd".

Once the application receives the signal indicating that the stream was reset, the receiving part
of the stream transitions to the "Reset Read" state, which is a terminal state.

3.3. Permitted Frame Types

The sender of a stream sends just three frame types that affect the state of a stream at either the
sender or the receiver: STREAM (Section 19.8), STREAM_DATA_BLOCKED (Section 19.13), and
RESET_STREAM (Section 19.4).
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A sender MUST NOT send any of these frames from a terminal state ("Data Recvd" or "Reset
Recvd"). A sender MUST NOT send a STREAM or STREAM_DATA_BLOCKED frame for a stream in
the "Reset Sent" state or any terminal state -- that is, after sending a RESET_STREAM frame. A
receiver could receive any of these three frames in any state, due to the possibility of delayed
delivery of packets carrying them.

The receiver of a stream sends MAX_STREAM_DATA frames (Section 19.10) and STOP_SENDING
frames (Section 19.5).

The receiver only sends MAX_STREAM_DATA frames in the "Recv" state. A receiver MAY send a
STOP_SENDING frame in any state where it has not received a RESET_STREAM frame -- that is,
states other than "Reset Recvd" or "Reset Read". However, there is little value in sending a
STOP_SENDING frame in the "Data Recvd" state, as all stream data has been received. A sender
could receive either of these two types of frames in any state as a result of delayed delivery of
packets.

3.4. Bidirectional Stream States

A bidirectional stream is composed of sending and receiving parts. Implementations can
represent states of the bidirectional stream as composites of sending and receiving stream states.
The simplest model presents the stream as "open” when either sending or receiving parts are in a
non-terminal state and "closed" when both sending and receiving streams are in terminal states.

Table 2 shows a more complex mapping of bidirectional stream states that loosely correspond to
the stream states defined in HTTP/2 [HTTP2]. This shows that multiple states on sending or
receiving parts of streams are mapped to the same composite state. Note that this is just one
possibility for such a mapping; this mapping requires that data be acknowledged before the
transition to a "closed" or "half-closed" state.

Sending Part

No Stream / Ready
Ready /Send / Data Sent
Ready /Send / Data Sent
Ready /Send / Data Sent
Data Recvd

Reset Sent / Reset Recvd
Reset Sent / Reset Recvd
Reset Sent / Reset Recvd

Data Recvd

Iyengar & Thomson

Receiving Part

No Stream / Recv (*1)
Recv / Size Known

Data Recvd / Data Read
Reset Recvd / Reset Read
Recv / Size Known

Recv / Size Known

Data Recvd / Data Read
Reset Recvd / Reset Read

Data Recvd / Data Read

Standards Track

Composite State
idle

open

half-closed (remote)
half-closed (remote)
half-closed (local)
half-closed (local)
closed

closed

closed
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Sending Part Receiving Part Composite State

Data Recvd Reset Recvd / Reset Read  closed
Table 2: Possible Mapping of Stream States to HTTP/2

Note (*1): A stream is considered "idle" if it has not yet been created or if the
receiving part of the stream is in the "Recv" state without yet having received any
frames.

3.5. Solicited State Transitions

If an application is no longer interested in the data it is receiving on a stream, it can abort
reading the stream and specify an application error code.

If the stream is in the "Recv" or "Size Known" state, the transport SHOULD signal this by sending a
STOP_SENDING frame to prompt closure of the stream in the opposite direction. This typically
indicates that the receiving application is no longer reading data it receives from the stream, but
it is not a guarantee that incoming data will be ignored.

STREAM frames received after sending a STOP_SENDING frame are still counted toward
connection and stream flow control, even though these frames can be discarded upon receipt.

A STOP_SENDING frame requests that the receiving endpoint send a RESET_STREAM frame. An
endpoint that receives a STOP_SENDING frame MUST send a RESET_STREAM frame if the stream
is in the "Ready" or "Send" state. If the stream is in the "Data Sent" state, the endpoint MAY defer
sending the RESET_STREAM frame until the packets containing outstanding data are
acknowledged or declared lost. If any outstanding data is declared lost, the endpoint SHOULD
send a RESET_STREAM frame instead of retransmitting the data.

An endpoint SHOULD copy the error code from the STOP_SENDING frame to the RESET_STREAM
frame it sends, but it can use any application error code. An endpoint that sends a
STOP_SENDING frame MAY ignore the error code in any RESET_STREAM frames subsequently
received for that stream.

STOP_SENDING SHOULD only be sent for a stream that has not been reset by the peer.
STOP_SENDING is most useful for streams in the "Recv" or "Size Known" state.

An endpoint is expected to send another STOP_SENDING frame if a packet containing a previous
STOP_SENDING is lost. However, once either all stream data or a RESET STREAM frame has been
received for the stream -- that is, the stream is in any state other than "Recv" or "Size Known" --
sending a STOP_SENDING frame is unnecessary.

An endpoint that wishes to terminate both directions of a bidirectional stream can terminate one
direction by sending a RESET_STREAM frame, and it can encourage prompt termination in the
opposite direction by sending a STOP_SENDING frame.

Iyengar & Thomson Standards Track Page 21



RFC 9000 QUIC Transport Protocol May 2021

4. Flow Control

Receivers need to limit the amount of data that they are required to buffer, in order to prevent a
fast sender from overwhelming them or a malicious sender from consuming a large amount of
memory. To enable a receiver to limit memory commitments for a connection, streams are flow
controlled both individually and across a connection as a whole. A QUIC receiver controls the
maximum amount of data the sender can send on a stream as well as across all streams at any
time, as described in Sections 4.1 and 4.2.

Similarly, to limit concurrency within a connection, a QUIC endpoint controls the maximum
cumulative number of streams that its peer can initiate, as described in Section 4.6.

Data sent in CRYPTO frames is not flow controlled in the same way as stream data. QUIC relies on
the cryptographic protocol implementation to avoid excessive buffering of data; see [QUIC-TLS].
To avoid excessive buffering at multiple layers, QUIC implementations SHOULD provide an
interface for the cryptographic protocol implementation to communicate its buffering limits.

4.1. Data Flow Control

QUIC employs a limit-based flow control scheme where a receiver advertises the limit of total
bytes it is prepared to receive on a given stream or for the entire connection. This leads to two
levels of data flow control in QUIC:

* Stream flow control, which prevents a single stream from consuming the entire receive
buffer for a connection by limiting the amount of data that can be sent on each stream.

* Connection flow control, which prevents senders from exceeding a receiver's buffer capacity
for the connection by limiting the total bytes of stream data sent in STREAM frames on all
streams.

Senders MUST NOT send data in excess of either limit.

A receiver sets initial limits for all streams through transport parameters during the handshake
(Section 7.4). Subsequently, a receiver sends MAX_STREAM_DATA frames (Section 19.10) or
MAX_DATA frames (Section 19.9) to the sender to advertise larger limits.

A receiver can advertise a larger limit for a stream by sending a MAX_STREAM_DATA frame with
the corresponding stream ID. A MAX_STREAM_DATA frame indicates the maximum absolute byte
offset of a stream. A receiver could determine the flow control offset to be advertised based on
the current offset of data consumed on that stream.

A receiver can advertise a larger limit for a connection by sending a MAX_DATA frame, which
indicates the maximum of the sum of the absolute byte offsets of all streams. A receiver
maintains a cumulative sum of bytes received on all streams, which is used to check for
violations of the advertised connection or stream data limits. A receiver could determine the
maximum data limit to be advertised based on the sum of bytes consumed on all streams.
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Once a receiver advertises a limit for the connection or a stream, it is not an error to advertise a
smaller limit, but the smaller limit has no effect.

A receiver MUST close the connection with an error of type FLOW_CONTROL_ERROR if the
sender violates the advertised connection or stream data limits; see Section 11 for details on
error handling.

A sender MUST ignore any MAX_STREAM_DATA or MAX_DATA frames that do not increase flow
control limits.

If a sender has sent data up to the limit, it will be unable to send new data and is considered
blocked. A sender SHOULD send a STREAM_DATA_BLOCKED or DATA_BLOCKED frame to indicate
to the receiver that it has data to write but is blocked by flow control limits. If a sender is blocked
for a period longer than the idle timeout (Section 10.1), the receiver might close the connection
even when the sender has data that is available for transmission. To keep the connection from
closing, a sender that is flow control limited SHOULD periodically send a
STREAM_DATA_BLOCKED or DATA_BLOCKED frame when it has no ack-eliciting packets in flight.

4.2. Increasing Flow Control Limits

Implementations decide when and how much credit to advertise in MAX_STREAM_DATA and
MAX_DATA frames, but this section offers a few considerations.

To avoid blocking a sender, a receiver MAY send a MAX_STREAM_DATA or MAX_DATA frame
multiple times within a round trip or send it early enough to allow time for loss of the frame and
subsequent recovery.

Control frames contribute to connection overhead. Therefore, frequently sending
MAX_STREAM_DATA and MAX_DATA frames with small changes is undesirable. On the other
hand, if updates are less frequent, larger increments to limits are necessary to avoid blocking a
sender, requiring larger resource commitments at the receiver. There is a trade-off between
resource commitment and overhead when determining how large a limit is advertised.

A receiver can use an autotuning mechanism to tune the frequency and amount of advertised
additional credit based on a round-trip time estimate and the rate at which the receiving
application consumes data, similar to common TCP implementations. As an optimization, an
endpoint could send frames related to flow control only when there are other frames to send,
ensuring that flow control does not cause extra packets to be sent.

A blocked sender is not required to send STREAM_DATA_BLOCKED or DATA_BLOCKED frames.
Therefore, a receiver MUST NOT wait for a STREAM_DATA_BLOCKED or DATA_BLOCKED frame
before sending a MAX_STREAM_DATA or MAX_DATA frame; doing so could result in the sender
being blocked for the rest of the connection. Even if the sender sends these frames, waiting for
them will result in the sender being blocked for at least an entire round trip.

When a sender receives credit after being blocked, it might be able to send a large amount of
data in response, resulting in short-term congestion; see Section 7.7 of [QUIC-RECOVERY] for a
discussion of how a sender can avoid this congestion.
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4.3. Flow Control Performance

If an endpoint cannot ensure that its peer always has available flow control credit that is greater
than the peer's bandwidth-delay product on this connection, its receive throughput will be
limited by flow control.

Packet loss can cause gaps in the receive buffer, preventing the application from consuming data
and freeing up receive buffer space.

Sending timely updates of flow control limits can improve performance. Sending packets only to
provide flow control updates can increase network load and adversely affect performance.
Sending flow control updates along with other frames, such as ACK frames, reduces the cost of
those updates.

4.4. Handling Stream Cancellation

Endpoints need to eventually agree on the amount of flow control credit that has been consumed
on every stream, to be able to account for all bytes for connection-level flow control.

On receipt of a RESET_STREAM frame, an endpoint will tear down state for the matching stream
and ignore further data arriving on that stream.

RESET_STREAM terminates one direction of a stream abruptly. For a bidirectional stream,
RESET_STREAM has no effect on data flow in the opposite direction. Both endpoints MUST
maintain flow control state for the stream in the unterminated direction until that direction
enters a terminal state.

4.5. Stream Final Size

The final size is the amount of flow control credit that is consumed by a stream. Assuming that
every contiguous byte on the stream was sent once, the final size is the number of bytes sent.
More generally, this is one higher than the offset of the byte with the largest offset sent on the
stream, or zero if no bytes were sent.

A sender always communicates the final size of a stream to the receiver reliably, no matter how
the stream is terminated. The final size is the sum of the Offset and Length fields of a STREAM
frame with a FIN flag, noting that these fields might be implicit. Alternatively, the Final Size field
of a RESET_STREAM frame carries this value. This guarantees that both endpoints agree on how
much flow control credit was consumed by the sender on that stream.

An endpoint will know the final size for a stream when the receiving part of the stream enters
the "Size Known" or "Reset Recvd" state (Section 3). The receiver MUST use the final size of the
stream to account for all bytes sent on the stream in its connection-level flow controller.

An endpoint MUST NOT send data on a stream at or beyond the final size.
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Once a final size for a stream is known, it cannot change. If a RESET_STREAM or STREAM frame
is received indicating a change in the final size for the stream, an endpoint SHOULD respond with
an error of type FINAL_SIZE_ERROR; see Section 11 for details on error handling. A receiver
SHOULD treat receipt of data at or beyond the final size as an error of type FINAL_SIZE_ERROR,
even after a stream is closed. Generating these errors is not mandatory, because requiring that
an endpoint generate these errors also means that the endpoint needs to maintain the final size
state for closed streams, which could mean a significant state commitment.

4.6. Controlling Concurrency

An endpoint limits the cumulative number of incoming streams a peer can open. Only streams
with a stream ID less than (max_streams * 4 + first_stream_id_of_type) can be opened;
see Table 1. Initial limits are set in the transport parameters; see Section 18.2. Subsequent limits
are advertised using MAX_STREAMS frames; see Section 19.11. Separate limits apply to
unidirectional and bidirectional streams.

If a max_streams transport parameter or a MAX_STREAMS frame is received with a value greater

than 260, this would allow a maximum stream ID that cannot be expressed as a variable-length
integer; see Section 16. If either is received, the connection MUST be closed immediately with a
connection error of type TRANSPORT_PARAMETER_ERROR if the offending value was received in
a transport parameter or of type FRAME_ENCODING_ERROR if it was received in a frame; see
Section 10.2.

Endpoints MUST NOT exceed the limit set by their peer. An endpoint that receives a frame with a
stream ID exceeding the limit it has sent MUST treat this as a connection error of type
STREAM_LIMIT_ERROR,; see Section 11 for details on error handling.

Once a receiver advertises a stream limit using the MAX_STREAMS frame, advertising a smaller
limit has no effect. MAX_STREAMS frames that do not increase the stream limit MUST be ignored.

As with stream and connection flow control, this document leaves implementations to decide
when and how many streams should be advertised to a peer via MAX_STREAMS.
Implementations might choose to increase limits as streams are closed, to keep the number of
streams available to peers roughly consistent.

An endpoint that is unable to open a new stream due to the peer's limits SHOULD send a
STREAMS_BLOCKED frame (Section 19.14). This signal is considered useful for debugging. An
endpoint MUST NOT wait to receive this signal before advertising additional credit, since doing so
will mean that the peer will be blocked for at least an entire round trip, and potentially
indefinitely if the peer chooses not to send STREAMS_BLOCKED frames.

5. Connections

A QUIC connection is shared state between a client and a server.
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Each connection starts with a handshake phase, during which the two endpoints establish a
shared secret using the cryptographic handshake protocol [QUIC-TLS] and negotiate the
application protocol. The handshake (Section 7) confirms that both endpoints are willing to
communicate (Section 8.1) and establishes parameters for the connection (Section 7.4).

An application protocol can use the connection during the handshake phase with some
limitations. 0-RTT allows application data to be sent by a client before receiving a response from
the server. However, 0-RTT provides no protection against replay attacks; see Section 9.2 of
[QUIC-TLS]. A server can also send application data to a client before it receives the final
cryptographic handshake messages that allow it to confirm the identity and liveness of the client.
These capabilities allow an application protocol to offer the option of trading some security
guarantees for reduced latency.

The use of connection IDs (Section 5.1) allows connections to migrate to a new network path,
both as a direct choice of an endpoint and when forced by a change in a middlebox. Section 9
describes mitigations for the security and privacy issues associated with migration.

For connections that are no longer needed or desired, there are several ways for a client and
server to terminate a connection, as described in Section 10.

5.1. Connection ID

Each connection possesses a set of connection identifiers, or connection IDs, each of which can
identify the connection. Connection IDs are independently selected by endpoints; each endpoint
selects the connection IDs that its peer uses.

The primary function of a connection ID is to ensure that changes in addressing at lower
protocol layers (UDP, IP) do not cause packets for a QUIC connection to be delivered to the wrong
endpoint. Each endpoint selects connection IDs using an implementation-specific (and perhaps
deployment-specific) method that will allow packets with that connection ID to be routed back to
the endpoint and to be identified by the endpoint upon receipt.

Multiple connection IDs are used so that endpoints can send packets that cannot be identified by
an observer as being for the same connection without cooperation from an endpoint; see Section
9.5.

Connection IDs MUST NOT contain any information that can be used by an external observer
(that is, one that does not cooperate with the issuer) to correlate them with other connection IDs
for the same connection. As a trivial example, this means the same connection ID MUST NOT be
issued more than once on the same connection.

Packets with long headers include Source Connection ID and Destination Connection ID fields.
These fields are used to set the connection IDs for new connections; see Section 7.2 for details.

Packets with short headers (Section 17.3) only include the Destination Connection ID and omit
the explicit length. The length of the Destination Connection ID field is expected to be known to
endpoints. Endpoints using a load balancer that routes based on connection ID could agree with
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the load balancer on a fixed length for connection IDs or agree on an encoding scheme. A fixed
portion could encode an explicit length, which allows the entire connection ID to vary in length
and still be used by the load balancer.

A Version Negotiation (Section 17.2.1) packet echoes the connection IDs selected by the client,
both to ensure correct routing toward the client and to demonstrate that the packet is in
response to a packet sent by the client.

A zero-length connection ID can be used when a connection ID is not needed to route to the
correct endpoint. However, multiplexing connections on the same local IP address and port
while using zero-length connection IDs will cause failures in the presence of peer connection
migration, NAT rebinding, and client port reuse. An endpoint MUST NOT use the same IP address
and port for multiple concurrent connections with zero-length connection IDs, unless it is certain
that those protocol features are not in use.

When an endpoint uses a non-zero-length connection ID, it needs to ensure that the peer has a
supply of connection IDs from which to choose for packets sent to the endpoint. These
connection IDs are supplied by the endpoint using the NEW_CONNECTION_ID frame (Section
19.15).

5.1.1. Issuing Connection IDs

Each connection ID has an associated sequence number to assist in detecting when
NEW_CONNECTION_ID or RETIRE_CONNECTION_ID frames refer to the same value. The initial
connection ID issued by an endpoint is sent in the Source Connection ID field of the long packet
header (Section 17.2) during the handshake. The sequence number of the initial connection ID is
0. If the preferred_address transport parameter is sent, the sequence number of the supplied
connection ID is 1.

Additional connection IDs are communicated to the peer using NEW_CONNECTION_ID frames
(Section 19.15). The sequence number on each newly issued connection ID MUST increase by 1.
The connection ID that a client selects for the first Destination Connection ID field it sends and
any connection ID provided by a Retry packet are not assigned sequence numbers.

When an endpoint issues a connection ID, it MUST accept packets that carry this connection ID
for the duration of the connection or until its peer invalidates the connection ID via a
RETIRE_CONNECTION_ID frame (Section 19.16). Connection IDs that are issued and not retired
are considered active; any active connection ID is valid for use with the current connection at
any time, in any packet type. This includes the connection ID issued by the server via the
preferred_address transport parameter.

An endpoint SHOULD ensure that its peer has a sufficient number of available and unused
connection IDs. Endpoints advertise the number of active connection IDs they are willing to
maintain using the active_connection_id_limit transport parameter. An endpoint MUST NOT
provide more connection IDs than the peer's limit. An endpoint MAY send connection IDs that
temporarily exceed a peer's limit if the NEW_CONNECTION_ID frame also requires the
retirement of any excess, by including a sufficiently large value in the Retire Prior To field.
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A NEW_CONNECTION_ID frame might cause an endpoint to add some active connection IDs and
retire others based on the value of the Retire Prior To field. After processing a
NEW_CONNECTION_ID frame and adding and retiring active connection IDs, if the number of
active connection IDs exceeds the value advertised in its active_connection_id_limit transport
parameter, an endpoint MUST close the connection with an error of type
CONNECTION_ID_LIMIT_ERROR.

An endpoint SHOULD supply a new connection ID when the peer retires a connection ID. If an
endpoint provided fewer connection IDs than the peer's active_connection_id_limit, it MAY
supply a new connection ID when it receives a packet with a previously unused connection ID.
An endpoint MAY limit the total number of connection IDs issued for each connection to avoid
the risk of running out of connection IDs; see Section 10.3.2. An endpoint MAY also limit the
issuance of connection IDs to reduce the amount of per-path state it maintains, such as path
validation status, as its peer might interact with it over as many paths as there are issued
connection IDs.

An endpoint that initiates migration and requires non-zero-length connection IDs SHOULD
ensure that the pool of connection IDs available to its peer allows the peer to use a new
connection ID on migration, as the peer will be unable to respond if the pool is exhausted.

An endpoint that selects a zero-length connection ID during the handshake cannot issue a new
connection ID. A zero-length Destination Connection ID field is used in all packets sent toward
such an endpoint over any network path.

5.1.2. Consuming and Retiring Connection IDs

An endpoint can change the connection ID it uses for a peer to another available one at any time
during the connection. An endpoint consumes connection IDs in response to a migrating peer;
see Section 9.5 for more details.

An endpoint maintains a set of connection IDs received from its peer, any of which it can use
when sending packets. When the endpoint wishes to remove a connection ID from use, it sends a
RETIRE_CONNECTION_ID frame to its peer. Sending a RETIRE_CONNECTION_ID frame indicates
that the connection ID will not be used again and requests that the peer replace it with a new
connection ID using a NEW_CONNECTION_ID frame.

As discussed in Section 9.5, endpoints limit the use of a connection ID to packets sent from a
single local address to a single destination address. Endpoints SHOULD retire connection IDs
when they are no longer actively using either the local or destination address for which the
connection ID was used.

An endpoint might need to stop accepting previously issued connection IDs in certain
circumstances. Such an endpoint can cause its peer to retire connection IDs by sending a
NEW_CONNECTION_ID frame with an increased Retire Prior To field. The endpoint SHOULD
continue to accept the previously issued connection IDs until they are retired by the peer. If the
endpoint can no longer process the indicated connection IDs, it MAY close the connection.
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Upon receipt of an increased Retire Prior To field, the peer MUST stop using the corresponding
connection IDs and retire them with RETIRE_CONNECTION_ID frames before adding the newly
provided connection ID to the set of active connection IDs. This ordering allows an endpoint to
replace all active connection IDs without the possibility of a peer having no available connection
IDs and without exceeding the limit the peer sets in the active_connection_id_limit transport
parameter; see Section 18.2. Failure to cease using the connection IDs when requested can result
in connection failures, as the issuing endpoint might be unable to continue using the connection
IDs with the active connection.

An endpoint SHOULD limit the number of connection IDs it has retired locally for which
RETIRE_CONNECTION_ID frames have not yet been acknowledged. An endpoint SHOULD allow
for sending and tracking a number of RETIRE_CONNECTION_ID frames of at least twice the value
of the active_connection_id_limit transport parameter. An endpoint MUST NOT forget a
connection ID without retiring it, though it MAY choose to treat having connection IDs in need of
retirement that exceed this limit as a connection error of type CONNECTION_ID_LIMIT_ERROR.

Endpoints SHOULD NOT issue updates of the Retire Prior To field before receiving
RETIRE_CONNECTION_ID frames that retire all connection IDs indicated by the previous Retire
Prior To value.

5.2. Matching Packets to Connections

Incoming packets are classified on receipt. Packets can either be associated with an existing
connection or -- for servers -- potentially create a new connection.

Endpoints try to associate a packet with an existing connection. If the packet has a non-zero-
length Destination Connection ID corresponding to an existing connection, QUIC processes that
packet accordingly. Note that more than one connection ID can be associated with a connection;
see Section 5.1.

If the Destination Connection ID is zero length and the addressing information in the packet
matches the addressing information the endpoint uses to identify a connection with a zero-
length connection ID, QUIC processes the packet as part of that connection. An endpoint can use
just destination IP and port or both source and destination addresses for identification, though
this makes connections fragile as described in Section 5.1.

Endpoints can send a Stateless Reset (Section 10.3) for any packets that cannot be attributed to an
existing connection. A Stateless Reset allows a peer to more quickly identify when a connection
becomes unusable.

Packets that are matched to an existing connection are discarded if the packets are inconsistent
with the state of that connection. For example, packets are discarded if they indicate a different
protocol version than that of the connection or if the removal of packet protection is
unsuccessful once the expected keys are available.
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Invalid packets that lack strong integrity protection, such as Initial, Retry, or Version Negotiation,
MAY be discarded. An endpoint MUST generate a connection error if processing the contents of
these packets prior to discovering an error, or fully revert any changes made during that
processing.

5.2.1. Client Packet Handling

Valid packets sent to clients always include a Destination Connection ID that matches a value the
client selects. Clients that choose to receive zero-length connection IDs can use the local address
and port to identify a connection. Packets that do not match an existing connection -- based on
Destination Connection ID or, if this value is zero length, local IP address and port -- are
discarded.

Due to packet reordering or loss, a client might receive packets for a connection that are
encrypted with a key it has not yet computed. The client MAY drop these packets, or it MAY buffer
them in anticipation of later packets that allow it to compute the key.

If a client receives a packet that uses a different version than it initially selected, it MUST discard
that packet.

5.2.2. Server Packet Handling

If a server receives a packet that indicates an unsupported version and if the packet is large
enough to initiate a new connection for any supported version, the server SHOULD send a
Version Negotiation packet as described in Section 6.1. A server MAY limit the number of packets
to which it responds with a Version Negotiation packet. Servers MUST drop smaller packets that
specify unsupported versions.

The first packet for an unsupported version can use different semantics and encodings for any
version-specific field. In particular, different packet protection keys might be used for different
versions. Servers that do not support a particular version are unlikely to be able to decrypt the
payload of the packet or properly interpret the result. Servers SHOULD respond with a Version

Negotiation packet, provided that the datagram is sufficiently long.

Packets with a supported version, or no Version field, are matched to a connection using the
connection ID or -- for packets with zero-length connection IDs -- the local address and port.
These packets are processed using the selected connection; otherwise, the server continues as
described below.

If the packet is an Initial packet fully conforming with the specification, the server proceeds with
the handshake (Section 7). This commits the server to the version that the client selected.

If a server refuses to accept a new connection, it SHOULD send an Initial packet containing a
CONNECTION_CLOSE frame with error code CONNECTION_REFUSED.

If the packet is a 0-RTT packet, the server MAY buffer a limited number of these packets in
anticipation of a late-arriving Initial packet. Clients are not able to send Handshake packets prior
to receiving a server response, so servers SHOULD ignore any such packets.
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Servers MUST drop incoming packets under all other circumstances.

5.2.3. Considerations for Simple Load Balancers

A server deployment could load-balance among servers using only source and destination IP
addresses and ports. Changes to the client's IP address or port could result in packets being
forwarded to the wrong server. Such a server deployment could use one of the following
methods for connection continuity when a client's address changes.

* Servers could use an out-of-band mechanism to forward packets to the correct server based
on connection ID.

o If servers can use a dedicated server IP address or port, other than the one that the client
initially connects to, they could use the preferred_address transport parameter to request
that clients move connections to that dedicated address. Note that clients could choose not to
use the preferred address.

A server in a deployment that does not implement a solution to maintain connection continuity
when the client address changes SHOULD indicate that migration is not supported by using the
disable_active_migration transport parameter. The disable_active_migration transport
parameter does not prohibit connection migration after a client has acted on a preferred_address
transport parameter.

Server deployments that use this simple form of load balancing MUST avoid the creation of a
stateless reset oracle; see Section 21.11.

5.3. Operations on Connections

This document does not define an API for QUIC; it instead defines a set of functions for QUIC
connections that application protocols can rely upon. An application protocol can assume that an
implementation of QUIC provides an interface that includes the operations described in this
section. An implementation designed for use with a specific application protocol might provide
only those operations that are used by that protocol.

When implementing the client role, an application protocol can:

* open a connection, which begins the exchange described in Section 7;
* enable Early Data when available; and
* be informed when Early Data has been accepted or rejected by a server.

When implementing the server role, an application protocol can:

» listen for incoming connections, which prepares for the exchange described in Section 7;

« if Early Data is supported, embed application-controlled data in the TLS resumption ticket
sent to the client; and

o if Early Data is supported, retrieve application-controlled data from the client's resumption
ticket and accept or reject Early Data based on that information.
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In either role, an application protocol can:

¢ configure minimum values for the initial number of permitted streams of each type, as
communicated in the transport parameters (Section 7.4);

* control resource allocation for receive buffers by setting flow control limits both for streams
and for the connection;

* identify whether the handshake has completed successfully or is still ongoing;

* keep a connection from silently closing, by either generating PING frames (Section 19.2) or
requesting that the transport send additional frames before the idle timeout expires (Section
10.1); and

* immediately close (Section 10.2) the connection.

6. Version Negotiation

Version negotiation allows a server to indicate that it does not support the version the client
used. A server sends a Version Negotiation packet in response to each packet that might initiate a
new connection; see Section 5.2 for details.

The size of the first packet sent by a client will determine whether a server sends a Version
Negotiation packet. Clients that support multiple QUIC versions SHOULD ensure that the first UDP
datagram they send is sized to the largest of the minimum datagram sizes from all versions they
support, using PADDING frames (Section 19.1) as necessary. This ensures that the server responds
if there is a mutually supported version. A server might not send a Version Negotiation packet if
the datagram it receives is smaller than the minimum size specified in a different version; see
Section 14.1.

6.1. Sending Version Negotiation Packets

If the version selected by the client is not acceptable to the server, the server responds with a
Version Negotiation packet; see Section 17.2.1. This includes a list of versions that the server will
accept. An endpoint MUST NOT send a Version Negotiation packet in response to receiving a
Version Negotiation packet.

This system allows a server to process packets with unsupported versions without retaining
state. Though either the Initial packet or the Version Negotiation packet that is sent in response
could be lost, the client will send new packets until it successfully receives a response or it
abandons the connection attempt.

A server MAY limit the number of Version Negotiation packets it sends. For instance, a server that
is able to recognize packets as 0-RTT might choose not to send Version Negotiation packets in
response to 0-RTT packets with the expectation that it will eventually receive an Initial packet.
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6.2. Handling Version Negotiation Packets

Version Negotiation packets are designed to allow for functionality to be defined in the future
that allows QUIC to negotiate the version of QUIC to use for a connection. Future Standards Track
specifications might change how implementations that support multiple versions of QUIC react
to Version Negotiation packets received in response to an attempt to establish a connection using
this version.

A client that supports only this version of QUIC MUST abandon the current connection attempt if
it receives a Version Negotiation packet, with the following two exceptions. A client MUST discard
any Version Negotiation packet if it has received and successfully processed any other packet,
including an earlier Version Negotiation packet. A client MUST discard a Version Negotiation
packet that lists the QUIC version selected by the client.

How to perform version negotiation is left as future work defined by future Standards Track
specifications. In particular, that future work will ensure robustness against version downgrade
attacks; see Section 21.12.

6.3. Using Reserved Versions

For a server to use a new version in the future, clients need to correctly handle unsupported
versions. Some version numbers (0x?a?a?a?a, as defined in Section 15) are reserved for inclusion
in fields that contain version numbers.

Endpoints MAY add reserved versions to any field where unknown or unsupported versions are
ignored to test that a peer correctly ignores the value. For instance, an endpoint could include a
reserved version in a Version Negotiation packet; see Section 17.2.1. Endpoints MAY send packets
with a reserved version to test that a peer correctly discards the packet.

7. Cryptographic and Transport Handshake

QUIC relies on a combined cryptographic and transport handshake to minimize connection
establishment latency. QUIC uses the CRYPTO frame (Section 19.6) to transmit the cryptographic
handshake. The version of QUIC defined in this document is identified as 0x00000001 and uses
TLS as described in [QUIC-TLS]; a different QUIC version could indicate that a different
cryptographic handshake protocol is in use.

QUIC provides reliable, ordered delivery of the cryptographic handshake data. QUIC packet
protection is used to encrypt as much of the handshake protocol as possible. The cryptographic
handshake MUST provide the following properties:

 authenticated key exchange, where
o a server is always authenticated,

o a client is optionally authenticated,
o every connection produces distinct and unrelated keys, and
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o keying material is usable for packet protection for both 0-RTT and 1-RTT packets.

¢ authenticated exchange of values for transport parameters of both endpoints, and
confidentiality protection for server transport parameters (see Section 7.4).

* authenticated negotiation of an application protocol (TLS uses Application-Layer Protocol
Negotiation (ALPN) [ALPN] for this purpose).

The CRYPTO frame can be sent in different packet number spaces (Section 12.3). The offsets used
by CRYPTO frames to ensure ordered delivery of cryptographic handshake data start from zero
in each packet number space.

Figure 4 shows a simplified handshake and the exchange of packets and frames that are used to
advance the handshake. Exchange of application data during the handshake is enabled where
possible, shown with an asterisk ("*"). Once the handshake is complete, endpoints are able to
exchange application data freely.

Client Server

Initial (CRYPTO)

O-RTT (%)  —mmmmee- >
Initial (CRYPTO)
Handshake (CRYPTO)
<mmmmm - 1-RTT (*)

Handshake (CRYPTO)

1-RTT (*) mmmmmmmee- >
<——-—-—— - 1-RTT (HANDSHAKE_DONE)
1-RTT <=========> 1-RTT

Figure 4: Simplified QUIC Handshake

Endpoints can use packets sent during the handshake to test for Explicit Congestion Notification
(ECN) support; see Section 13.4. An endpoint validates support for ECN by observing whether the
ACK frames acknowledging the first packets it sends carry ECN counts, as described in Section
13.4.2.

Endpoints MUST explicitly negotiate an application protocol. This avoids situations where there is
a disagreement about the protocol that is in use.

7.1. Example Handshake Flows

Details of how TLS is integrated with QUIC are provided in [QUIC-TLS], but some examples are
provided here. An extension of this exchange to support client address validation is shown in
Section 8.1.2.

Once any address validation exchanges are complete, the cryptographic handshake is used to
agree on cryptographic keys. The cryptographic handshake is carried in Initial (Section 17.2.2)
and Handshake (Section 17.2.4) packets.

Iyengar & Thomson Standards Track Page 34



RFC 9000 QUIC Transport Protocol

May 2021

Figure 5 provides an overview of the 1-RTT handshake. Each line shows a QUIC packet with the
packet type and packet number shown first, followed by the frames that are typically contained

in those packets. For instance, the first packet is of type Initial, with packet number 0, and

contains a CRYPTO frame carrying the ClientHello.

Multiple QUIC packets -- even of different packet types -- can be coalesced into a single UDP
datagram; see Section 12.2. As a result, this handshake could consist of as few as four UDP

datagrams, or any number more (subject to limits inherent to the protocol, such as congestion
control and anti-amplification). For instance, the server's first flight contains Initial packets,

Handshake packets, and "0.5-RTT data" in 1-RTT packets.

Client Server

Initial[@]: CRYPTO[CH] ->

Initial[@]: CRYPTO[SH] ACK[@]
Handshake[®@]: CRYPTO[EE, CERT, CV, FIN]
<- 1-RTT[O@]: STREAM[1, "...

Initial[1]: ACK[O]
Handshake[©]: CRYPTO[FIN], ACK[O]
1-RTT[O]: STREAM[O, "..."], ACK[O] ->

Handshake[1]: ACK[@]
<- 1-RTT[1]: HANDSHAKE_DONE, STREAM[3, "..."], ACK[O]

Figure 5: Example 1-RTT Handshake

Figure 6 shows an example of a connection with a 0-RTT handshake and a single packet of 0-RTT
data. Note that as described in Section 12.3, the server acknowledges 0-RTT data in 1-RTT packets,

and the client sends 1-RTT packets in the same packet number space.

Client Server

Initial[@]: CRYPTO[CH]

O-RTT[@]: STREAM[O, "..."] ->
Initial[@]: CRYPTO[SH] ACK[@]
Handshake[B] CRYPTO[EE, FIN]
<- 1-RTT[O]: STREAM[1, "..."] ACK[O]

Initial[1]: ACK[O]
Handshake[©]: CRYPTO[FIN], ACK[O]
1-RTT[1]: STREAM[O, "..."] ACK[O] ->

Handshake[1]: ACK[@]
<- 1-RTT[1]: HANDSHAKE_DONE, STREAM[3, "..."], ACK[1]

Figure 6: Example 0-RTT Handshake
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7.2. Negotiating Connection IDs

A connection ID is used to ensure consistent routing of packets, as described in Section 5.1. The
long header contains two connection IDs: the Destination Connection ID is chosen by the
recipient of the packet and is used to provide consistent routing; the Source Connection ID is
used to set the Destination Connection ID used by the peer.

During the handshake, packets with the long header (Section 17.2) are used to establish the
connection IDs used by both endpoints. Each endpoint uses the Source Connection ID field to
specify the connection ID that is used in the Destination Connection ID field of packets being sent
to them. After processing the first Initial packet, each endpoint sets the Destination Connection ID
field in subsequent packets it sends to the value of the Source Connection ID field that it received.

When an Initial packet is sent by a client that has not previously received an Initial or Retry
packet from the server, the client populates the Destination Connection ID field with an
unpredictable value. This Destination Connection ID MUST be at least 8 bytes in length. Until a
packet is received from the server, the client MUST use the same Destination Connection ID value
on all packets in this connection.

The Destination Connection ID field from the first Initial packet sent by a client is used to
determine packet protection keys for Initial packets. These keys change after receiving a Retry
packet; see Section 5.2 of [QUIC-TLS].

The client populates the Source Connection ID field with a value of its choosing and sets the
Source Connection ID Length field to indicate the length.

0-RTT packets in the first flight use the same Destination Connection ID and Source Connection ID
values as the client's first Initial packet.

Upon first receiving an Initial or Retry packet from the server, the client uses the Source
Connection ID supplied by the server as the Destination Connection ID for subsequent packets,
including any 0-RTT packets. This means that a client might have to change the connection ID it
sets in the Destination Connection ID field twice during connection establishment: once in
response to a Retry packet and once in response to an Initial packet from the server. Once a
client has received a valid Initial packet from the server, it MUST discard any subsequent packet
it receives on that connection with a different Source Connection ID.

A client MUST change the Destination Connection ID it uses for sending packets in response to
only the first received Initial or Retry packet. A server MUST set the Destination Connection ID it
uses for sending packets based on the first received Initial packet. Any further changes to the
Destination Connection ID are only permitted if the values are taken from
NEW_CONNECTION_ID frames; if subsequent Initial packets include a different Source
Connection ID, they MUST be discarded. This avoids unpredictable outcomes that might
otherwise result from stateless processing of multiple Initial packets with different Source
Connection IDs.
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The Destination Connection ID that an endpoint sends can change over the lifetime of a
connection, especially in response to connection migration (Section 9); see Section 5.1.1 for
details.

7.3. Authenticating Connection IDs

The choice each endpoint makes about connection IDs during the handshake is authenticated by
including all values in transport parameters; see Section 7.4. This ensures that all connection IDs
used for the handshake are also authenticated by the cryptographic handshake.

Each endpoint includes the value of the Source Connection ID field from the first Initial packet it
sent in the initial_source_connection_id transport parameter; see Section 18.2. A server includes
the Destination Connection ID field from the first Initial packet it received from the client in the
original_destination_connection_id transport parameter; if the server sent a Retry packet, this
refers to the first Initial packet received before sending the Retry packet. If it sends a Retry
packet, a server also includes the Source Connection ID field from the Retry packet in the
retry_source_connection_id transport parameter.

The values provided by a peer for these transport parameters MUST match the values that an
endpoint used in the Destination and Source Connection ID fields of Initial packets that it sent
(and received, for servers). Endpoints MUST validate that received transport parameters match
received connection ID values. Including connection ID values in transport parameters and
verifying them ensures that an attacker cannot influence the choice of connection ID for a
successful connection by injecting packets carrying attacker-chosen connection IDs during the
handshake.

An endpoint MUST treat the absence of the initial_source_connection_id transport parameter
from either endpoint or the absence of the original_destination_connection_id transport
parameter from the server as a connection error of type TRANSPORT _PARAMETER_ERROR.

An endpoint MUST treat the following as a connection error of type
TRANSPORT_PARAMETER_ERROR or PROTOCOL_VIOLATION:

* absence of the retry_source_connection_id transport parameter from the server after
receiving a Retry packet,

» presence of the retry_source_connection_id transport parameter when no Retry packet was
received, or

* a mismatch between values received from a peer in these transport parameters and the
value sent in the corresponding Destination or Source Connection ID fields of Initial packets.

If a zero-length connection ID is selected, the corresponding transport parameter is included
with a zero-length value.

Figure 7 shows the connection IDs (with DCID=Destination Connection ID, SCID=Source
Connection ID) that are used in a complete handshake. The exchange of Initial packets is shown,
plus the later exchange of 1-RTT packets that includes the connection ID established during the
handshake.
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Client Server

Initial: DCID=S1, SCID=C1 ->
<- Initial: DCID=C1, SCID=S3

1-RTT: DCID=S3 ->
<- 1-RTT: DCID=C1

Figure 7: Use of Connection IDs in a Handshake

Figure 8 shows a similar handshake that includes a Retry packet.

Client Server

Initial: DCID=S1, SCID=C1 ->
<- Retry: DCID=C1, SCID=S2

Initial: DCID=S2, SCID=C1 ->
<- Initial: DCID=C1, SCID=S3

1-RTT: DCID=S3 ->
<- 1-RTT: DCID=CT

Figure 8: Use of Connection IDs in a Handshake with Retry

In both cases (Figures 7 and 8), the client sets the value of the initial_source_connection_id
transport parameter to C1.

When the handshake does not include a Retry (Figure 7), the server sets
original_destination_connection_id to S1 (note that this value is chosen by the client) and
initial_source_connection_id to S3. In this case, the server does not include a
retry_source_connection_id transport parameter.

When the handshake includes a Retry (Figure 8), the server sets
original_destination_connection_id to S1, retry_source_connection_id to S2, and
initial_source_connection_id to S3.

7.4. Transport Parameters

During connection establishment, both endpoints make authenticated declarations of their
transport parameters. Endpoints are required to comply with the restrictions that each
parameter defines; the description of each parameter includes rules for its handling.

Transport parameters are declarations that are made unilaterally by each endpoint. Each
endpoint can choose values for transport parameters independent of the values chosen by its
peer.

The encoding of the transport parameters is detailed in Section 18.
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QUIC includes the encoded transport parameters in the cryptographic handshake. Once the
handshake completes, the transport parameters declared by the peer are available. Each
endpoint validates the values provided by its peer.

Definitions for each of the defined transport parameters are included in Section 18.2.

An endpoint MUST treat receipt of a transport parameter with an invalid value as a connection
error of type TRANSPORT_PARAMETER_ERROR.

An endpoint MUST NOT send a parameter more than once in a given transport parameters
extension. An endpoint SHOULD treat receipt of duplicate transport parameters as a connection
error of type TRANSPORT_PARAMETER_ERROR.

Endpoints use transport parameters to authenticate the negotiation of connection IDs during the
handshake; see Section 7.3.

ALPN (see [ALPN]) allows clients to offer multiple application protocols during connection
establishment. The transport parameters that a client includes during the handshake apply to all
application protocols that the client offers. Application protocols can recommend values for
transport parameters, such as the initial flow control limits. However, application protocols that
set constraints on values for transport parameters could make it impossible for a client to offer
multiple application protocols if these constraints conflict.

7.4.1. Values of Transport Parameters for 0-RTT

Using 0-RTT depends on both client and server using protocol parameters that were negotiated
from a previous connection. To enable 0-RTT, endpoints store the values of the server transport
parameters with any session tickets it receives on the connection. Endpoints also store any
information required by the application protocol or cryptographic handshake; see Section 4.6 of
[QUIC-TLS]. The values of stored transport parameters are used when attempting 0-RTT using the
session tickets.

Remembered transport parameters apply to the new connection until the handshake completes
and the client starts sending 1-RTT packets. Once the handshake completes, the client uses the
transport parameters established in the handshake. Not all transport parameters are
remembered, as some do not apply to future connections or they have no effect on the use of 0-
RTT.

The definition of a new transport parameter (Section 7.4.2) MUST specify whether storing the
transport parameter for 0-RTT is mandatory, optional, or prohibited. A client need not store a
transport parameter it cannot process.

A client MUST NOT use remembered values for the following parameters: ack_delay_exponent,
max_ack_delay, initial_source_connection_id, original_destination_connection_id,
preferred_address, retry_source_connection_id, and stateless_reset_token. The client MUST use
the server's new values in the handshake instead; if the server does not provide new values, the
default values are used.
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A client that attempts to send 0-RTT data MUST remember all other transport parameters used by
the server that it is able to process. The server can remember these transport parameters or can
store an integrity-protected copy of the values in the ticket and recover the information when
accepting 0-RTT data. A server uses the transport parameters in determining whether to accept 0-
RTT data.

If 0-RTT data is accepted by the server, the server MUST NOT reduce any limits or alter any values
that might be violated by the client with its 0-RTT data. In particular, a server that accepts 0-RTT
data MUST NOT set values for the following parameters (Section 18.2) that are smaller than the
remembered values of the parameters.

e active_connection_id_limit

e initial max_data

e initial max_stream_data_bidi_local

e initial max_stream_data_bidi_remote
e initial max_stream_data_uni

e initial max_streams_bidi

e initial max_streams_uni

Omitting or setting a zero value for certain transport parameters can result in 0-RTT data being
enabled but not usable. The applicable subset of transport parameters that permit the sending of
application data SHOULD be set to non-zero values for 0-RTT. This includes initial_max_data and
either (1) initial_max_streams_bidi and initial_max_stream_data_bidi_remote or (2)
initial_max_streams_uni and initial_max_stream_data_uni.

A server might provide larger initial stream flow control limits for streams than the remembered
values that a client applies when sending 0-RTT. Once the handshake completes, the client
updates the flow control limits on all sending streams using the updated values of

initial max_stream_data_bidi_remote and initial max_stream_data_uni.

A server MAY store and recover the previously sent values of the max_idle_timeout,
max_udp_payload_size, and disable_active_migration parameters and reject 0-RTT if it selects
smaller values. Lowering the values of these parameters while also accepting 0-RTT data could
degrade the performance of the connection. Specifically, lowering the max_udp_payload_size
could result in dropped packets, leading to worse performance compared to rejecting 0-RTT data
outright.

A server MUST reject 0-RTT data if the restored values for transport parameters cannot be
supported.

When sending frames in 0-RTT packets, a client MUST only use remembered transport
parameters; importantly, it MUST NOT use updated values that it learns from the server's updated
transport parameters or from frames received in 1-RTT packets. Updated values of transport
parameters from the handshake apply only to 1-RTT packets. For instance, flow control limits
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from remembered transport parameters apply to all 0-RTT packets even if those values are
increased by the handshake or by frames sent in 1-RTT packets. A server MAY treat the use of
updated transport parameters in 0-RTT as a connection error of type PROTOCOL_VIOLATION.

7.4.2. New Transport Parameters

New transport parameters can be used to negotiate new protocol behavior. An endpoint MUST
ignore transport parameters that it does not support. The absence of a transport parameter
therefore disables any optional protocol feature that is negotiated using the parameter. As
described in Section 18.1, some identifiers are reserved in order to exercise this requirement.

A client that does not understand a transport parameter can discard it and attempt 0-RTT on
subsequent connections. However, if the client adds support for a discarded transport
parameter, it risks violating the constraints that the transport parameter establishes if it attempts
0-RTT. New transport parameters can avoid this problem by setting a default of the most
conservative value. Clients can avoid this problem by remembering all parameters, even those
not currently supported.

New transport parameters can be registered according to the rules in Section 22.3.

7.5. Cryptographic Message Buffering

Implementations need to maintain a buffer of CRYPTO data received out of order. Because there
is no flow control of CRYPTO frames, an endpoint could potentially force its peer to buffer an
unbounded amount of data.

Implementations MUST support buffering at least 4096 bytes of data received in out-of-order
CRYPTO frames. Endpoints MAY choose to allow more data to be buffered during the handshake.
Alarger limit during the handshake could allow for larger keys or credentials to be exchanged.
An endpoint's buffer size does not need to remain constant during the life of the connection.

Being unable to buffer CRYPTO frames during the handshake can lead to a connection failure. If
an endpoint's buffer is exceeded during the handshake, it can expand its buffer temporarily to
complete the handshake. If an endpoint does not expand its buffer, it MUST close the connection
with a CRYPTO_BUFFER_EXCEEDED error code.

Once the handshake completes, if an endpoint is unable to buffer all data in a CRYPTO frame, it
MAY discard that CRYPTO frame and all CRYPTO frames received in the future, or it MAY close the
connection with a CRYPTO_BUFFER_EXCEEDED error code. Packets containing discarded CRYPTO
frames MUST be acknowledged because the packet has been received and processed by the
transport even though the CRYPTO frame was discarded.
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8. Address Validation

Address validation ensures that an endpoint cannot be used for a traffic amplification attack. In
such an attack, a packet is sent to a server with spoofed source address information that
identifies a victim. If a server generates more or larger packets in response to that packet, the
attacker can use the server to send more data toward the victim than it would be able to send on
its own.

The primary defense against amplification attacks is verifying that a peer is able to receive
packets at the transport address that it claims. Therefore, after receiving packets from an address
that is not yet validated, an endpoint MUST limit the amount of data it sends to the unvalidated
address to three times the amount of data received from that address. This limit on the size of
responses is known as the anti-amplification limit.

Address validation is performed both during connection establishment (see Section 8.1) and
during connection migration (see Section 8.2).

8.1. Address Validation during Connection Establishment

Connection establishment implicitly provides address validation for both endpoints. In
particular, receipt of a packet protected with Handshake keys confirms that the peer successfully
processed an Initial packet. Once an endpoint has successfully processed a Handshake packet
from the peer, it can consider the peer address to have been validated.

Additionally, an endpoint MAY consider the peer address validated if the peer uses a connection
ID chosen by the endpoint and the connection ID contains at least 64 bits of entropy.

For the client, the value of the Destination Connection ID field in its first Initial packet allows it to
validate the server address as a part of successfully processing any packet. Initial packets from
the server are protected with keys that are derived from this value (see Section 5.2 of [QUIC-
TLS]). Alternatively, the value is echoed by the server in Version Negotiation packets (Section 6)
or included in the Integrity Tag in Retry packets (Section 5.8 of [QUIC-TLS]).

Prior to validating the client address, servers MUST NOT send more than three times as many
bytes as the number of bytes they have received. This limits the magnitude of any amplification
attack that can be mounted using spoofed source addresses. For the purposes of avoiding
amplification prior to address validation, servers MUST count all of the payload bytes received in
datagrams that are uniquely attributed to a single connection. This includes datagrams that
contain packets that are successfully processed and datagrams that contain packets that are all
discarded.

Clients MUST ensure that UDP datagrams containing Initial packets have UDP payloads of at least
1200 bytes, adding PADDING frames as necessary. A client that sends padded datagrams allows
the server to send more data prior to completing address validation.
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Loss of an Initial or Handshake packet from the server can cause a deadlock if the client does not
send additional Initial or Handshake packets. A deadlock could occur when the server reaches its
anti-amplification limit and the client has received acknowledgments for all the data it has sent.
In this case, when the client has no reason to send additional packets, the server will be unable to
send more data because it has not validated the client's address. To prevent this deadlock, clients
MUST send a packet on a Probe Timeout (PTO); see Section 6.2 of [QUIC-RECOVERY]. Specifically,
the client MUST send an Initial packet in a UDP datagram that contains at least 1200 bytes if it
does not have Handshake keys, and otherwise send a Handshake packet.

A server might wish to validate the client address before starting the cryptographic handshake.
QUIC uses a token in the Initial packet to provide address validation prior to completing the
handshake. This token is delivered to the client during connection establishment with a Retry
packet (see Section 8.1.2) or in a previous connection using the NEW_TOKEN frame (see Section
8.1.3).

In addition to sending limits imposed prior to address validation, servers are also constrained in
what they can send by the limits set by the congestion controller. Clients are only constrained by
the congestion controller.

8.1.1. Token Construction

A token sent in a NEW_TOKEN frame or a Retry packet MUST be constructed in a way that allows
the server to identify how it was provided to a client. These tokens are carried in the same field
but require different handling from servers.

8.1.2. Address Validation Using Retry Packets

Upon receiving the client's Initial packet, the server can request address validation by sending a
Retry packet (Section 17.2.5) containing a token. This token MUST be repeated by the client in all
Initial packets it sends for that connection after it receives the Retry packet.

In response to processing an Initial packet containing a token that was provided in a Retry
packet, a server cannot send another Retry packet; it can only refuse the connection or permit it
to proceed.

As long as it is not possible for an attacker to generate a valid token for its own address (see
Section 8.1.4) and the client is able to return that token, it proves to the server that it received the
token.

A server can also use a Retry packet to defer the state and processing costs of connection
establishment. Requiring the server to provide a different connection ID, along with the
original_destination_connection_id transport parameter defined in Section 18.2, forces the server
to demonstrate that it, or an entity it cooperates with, received the original Initial packet from
the client. Providing a different connection ID also grants a server some control over how
subsequent packets are routed. This can be used to direct connections to a different server
instance.
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If a server receives a client Initial that contains an invalid Retry token but is otherwise valid, it
knows the client will not accept another Retry token. The server can discard such a packet and
allow the client to time out to detect handshake failure, but that could impose a significant
latency penalty on the client. Instead, the server SHOULD immediately close (Section 10.2) the
connection with an INVALID_TOKEN error. Note that a server has not established any state for
the connection at this point and so does not enter the closing period.

A flow showing the use of a Retry packet is shown in Figure 9.

Client Server
Initial[@]: CRYPTO[CH] ->

<- Retry+Token
Initial+Token[1]: CRYPTO[CH] ->

Initial[@]: CRYPTO[SH] ACK[1]
Handshake[®@]: CRYPTO[EE, CERT, CV, FIN]
<- 1-RTT[@]: STREAM[1, "..."]

Figure 9: Example Handshake with Retry

8.1.3. Address Validation for Future Connections

A server MAY provide clients with an address validation token during one connection that can be
used on a subsequent connection. Address validation is especially important with 0-RTT because
a server potentially sends a significant amount of data to a client in response to 0-RTT data.

The server uses the NEW_TOKEN frame (Section 19.7) to provide the client with an address
validation token that can be used to validate future connections. In a future connection, the
client includes this token in Initial packets to provide address validation. The client MUST include
the token in all Initial packets it sends, unless a Retry replaces the token with a newer one. The
client MUST NOT use the token provided in a Retry for future connections. Servers MAY discard
any Initial packet that does not carry the expected token.

Unlike the token that is created for a Retry packet, which is used immediately, the token sent in
the NEW_TOKEN frame can be used after some period of time has passed. Thus, a token SHOULD
have an expiration time, which could be either an explicit expiration time or an issued
timestamp that can be used to dynamically calculate the expiration time. A server can store the
expiration time or include it in an encrypted form in the token.

A token issued with NEW_TOKEN MUST NOT include information that would allow values to be
linked by an observer to the connection on which it was issued. For example, it cannot include
the previous connection ID or addressing information, unless the values are encrypted. A server
MUST ensure that every NEW_TOKEN frame it sends is unique across all clients, with the
exception of those sent to repair losses of previously sent NEW_TOKEN frames. Information that
allows the server to distinguish between tokens from Retry and NEW_TOKEN MAY be accessible
to entities other than the server.
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It is unlikely that the client port number is the same on two different connections; validating the
port is therefore unlikely to be successful.

A token received in a NEW_TOKEN frame is applicable to any server that the connection is
considered authoritative for (e.g., server names included in the certificate). When connecting to a
server for which the client retains an applicable and unused token, it SHOULD include that token
in the Token field of its Initial packet. Including a token might allow the server to validate the
client address without an additional round trip. A client MUST NOT include a token that is not
applicable to the server that it is connecting to, unless the client has the knowledge that the
server that issued the token and the server the client is connecting to are jointly managing the
tokens. A client MAY use a token from any previous connection to that server.

A token allows a server to correlate activity between the connection where the token was issued
and any connection where it is used. Clients that want to break continuity of identity with a
server can discard tokens provided using the NEW_TOKEN frame. In comparison, a token
obtained in a Retry packet MUST be used immediately during the connection attempt and cannot
be used in subsequent connection attempts.

A client SHOULD NOT reuse a token from a NEW_TOKEN frame for different connection attempts.
Reusing a token allows connections to be linked by entities on the network path; see Section 9.5.

Clients might receive multiple tokens on a single connection. Aside from preventing linkability,
any token can be used in any connection attempt. Servers can send additional tokens to either
enable address validation for multiple connection attempts or replace older tokens that might
become invalid. For a client, this ambiguity means that sending the most recent unused token is
most likely to be effective. Though saving and using older tokens have no negative consequences,
clients can regard older tokens as being less likely to be useful to the server for address
validation.

When a server receives an Initial packet with an address validation token, it MUST attempt to
validate the token, unless it has already completed address validation. If the token is invalid,
then the server SHOULD proceed as if the client did not have a validated address, including
potentially sending a Retry packet. Tokens provided with NEW_TOKEN frames and Retry packets
can be distinguished by servers (see Section 8.1.1), and the latter can be validated more strictly. If
the validation succeeds, the server SHOULD then allow the handshake to proceed.

Note: The rationale for treating the client as unvalidated rather than discarding the
packet is that the client might have received the token in a previous connection
using the NEW_TOKEN frame, and if the server has lost state, it might be unable to
validate the token at all, leading to connection failure if the packet is discarded.

In a stateless design, a server can use encrypted and authenticated tokens to pass information to
clients that the server can later recover and use to validate a client address. Tokens are not
integrated into the cryptographic handshake, and so they are not authenticated. For instance, a
client might be able to reuse a token. To avoid attacks that exploit this property, a server can limit
its use of tokens to only the information needed to validate client addresses.
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Clients MAY use tokens obtained on one connection for any connection attempt using the same
version. When selecting a token to use, clients do not need to consider other properties of the
connection that is being attempted, including the choice of possible application protocols, session
tickets, or other connection properties.

8.1.4. Address Validation Token Integrity

An address validation token MUST be difficult to guess. Including a random value with at least
128 hits of entropy in the token would be sufficient, but this depends on the server remembering
the value it sends to clients.

A token-based scheme allows the server to offload any state associated with validation to the
client. For this design to work, the token MUST be covered by integrity protection against
modification or falsification by clients. Without integrity protection, malicious clients could
generate or guess values for tokens that would be accepted by the server. Only the server
requires access to the integrity protection key for tokens.

There is no need for a single well-defined format for the token because the server that generates
the token also consumes it. Tokens sent in Retry packets SHOULD include information that allows
the server to verify that the source IP address and port in client packets remain constant.

Tokens sent in NEW_TOKEN frames MUST include information that allows the server to verify
that the client IP address has not changed from when the token was issued. Servers can use
tokens from NEW_TOKEN frames in deciding not to send a Retry packet, even if the client
address has changed. If the client IP address has changed, the server MUST adhere to the anti-
amplification limit; see Section 8. Note that in the presence of NAT, this requirement might be
insufficient to protect other hosts that share the NAT from amplification attacks.

Attackers could replay tokens to use servers as amplifiers in DDoS attacks. To protect against
such attacks, servers MUST ensure that replay of tokens is prevented or limited. Servers SHOULD
ensure that tokens sent in Retry packets are only accepted for a short time, as they are returned
immediately by clients. Tokens that are provided in NEW_TOKEN frames (Section 19.7) need to
be valid for longer but SHOULD NOT be accepted multiple times. Servers are encouraged to allow
tokens to be used only once, if possible; tokens MAY include additional information about clients
to further narrow applicability or reuse.

8.2. Path Validation

Path validation is used by both peers during connection migration (see Section 9) to verify
reachability after a change of address. In path validation, endpoints test reachability between a
speci