I nt ernet Engi neering Task Force (I ETF) M Upadhyay

Request for Comments: 8353 Googl e
bsol etes: 5653 S. Mal kan
Cat egory: Standards Track Activldentity
| SSN: 2070-1721 W Wang

O acl e

May 2018

Ceneric Security Service APl Version 2: Java Bindi ngs Update
Abst r act

The Generic Security Services Application Progranm ng Interface
(GSS-API) offers application programers uni form access to security
services atop a variety of underlying cryptographic nechanisns. This
docunent updates the Java bindings for the GSS-API that are specified
in "Ceneric Security Service APl Version 2. Java Bi ndi ngs Update"
(RFC 5653). This docunment obsol etes RFC 5653 by addi ng a new out put
token field to the GSSException class so that when the initSecContext
or accept SecCont ext nmet hods of the GSSContext class fail, it has a
chance to emit an error token that can be sent to the peer for
debuggi ng or informational purpose. The streanm based GSSCont ext

nmet hods are also renoved in this version

The GSS- APl is described at a | anguage-i ndependent conceptual |eve

in "CGeneric Security Service Application ProgramInterface Version 2,
Update 1" (RFC 2743). The GSS-APlI allows a caller application to
authenticate a principal identity, to delegate rights to a peer, and
to apply security services such as confidentiality and integrity on a
per - message basis. Exanples of security nechani sns defined for

GSS- APl are "The Sinple Public-Key GSS-APlI Mechani sm (SPKM "

(RFC 2025) and "The Kerberos Version 5 Generic Security Service
Application Program | nterface (GSS-API) Mechani sm Version 2"

(RFC 4121).

Upadhyay, et al. St andards Track [Page 1]

RFC 8353 Java GSS- APl Updat e May 2018

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
https://ww.rfc-editor.org/info/rfc8353

Copyright Notice

Copyright (c) 2018 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

This docunent nmay contain material from | ETF Docunents or |ETF
Contributions published or nade publicly avail abl e bef ore Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the I ETF Trust the right to all ow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Upadhyay, et al. St andards Track [Page 2]

RFC 8353 Java GSS- APl Updat e

Tabl e of Contents

PP

o1

Upadhyay, et al.

[G2M & e

\l
NNNNNPDONOOAWNE

el e ol ol

CONOARONEQOGNIAA LN E

gouooaoaoaoaooooa

OO0 0000

I ntroduction

Not at i onal Conventl ons .
GSS- APl Oper ati onal Par adi gm
Addi ti onal Controls . .o
Del egati on .
Mut ual Aut henti catl on .

Anonynous Aut hentication . .
Integrity and Confidentiality .
I nter-process Context Transfer
The Use of Inconplete Contexts
i ng Conventions . Coe e
Package Nane .

Provi der Framewor k

I nt eger Types .

Opaque Data Types .

Strings

hj ect ldentifiers

hject ldentifier Sets
Credentials . -

Cont exts . .

Aut henti cati on Tokens .

11 I nter-process Tokens

12. Error Reporting
5.12.1. GSS Status Codes .

[En
o

5.12.2. Mechani sm Specific ét ét us Codes.

5.12.3. Supplenmentary Status Codes .

.13. Nanmes
. 14. Channel Bi ndi ngs
.15. Optional Paraneters . C e e
Introduction to GSS-API C asses and Interfaces

GSShvanager C ass .
GSSName Interface
GSSCredential Interface .
GSSCont ext Interface
MessageProp O ass .
GSSException O ass
Od dass . .
Channel Bi ndi ng Cl ass -
tal | ed GSS-API O ass Descri ptl on
public abstract class GSSManager
getl nstance . e
get Mechs . . .
get NanmesFor I\/bch .
get MechsFor Nane .
creat eNane

il
ghwNE

St andards Track

Repl ay and Qut - of - Sequense. Det ectl on.

May 2018

RFC 8353 Java GSS- APl Updat e

7.1.6 creat eNane

7.1.7. createNane

7.1.8. createNane .o

7.1.9. createCredenti al

7.1.10. createCredenti al

7.1.11. createCredenti al

7.1.12. createContext

7.1.13. createContext

7.1.14. createContext . .

7.1.15. addProviderAtFront . .

7.1.15.1. addProvider At Front Exanple dee
7.1.16. addProviderAtEnd . . .
7.1.16.1. addProvi der At End Exanple dee

7.1.17. Exanpl e Code . . .
7.2. public interface GBSNane

7.2.1. Static Constants

7.2.2. equals

7.2.3. equals

7.2.4. canonicalize

7.2.5. export

7.2.6. toString . .

7.2.7. getStrlngNaneType

7.2.8. isAnonynous . .

7.2.9. isWN . .

7.2.10. Exanple Code .o C e e e e e
7.3. public interface GSSCredentlaI |nplenents Cl oneabl e .

7.3.1. Static Constants

7.3.2. dispose

7.3.3. getNanme .

7.3.4. getNane . .

7.3.5. getRenalnlnngfetlne

7.3.6. getRemaininglnitLifetine

7.3.7. getRenmini ngAcceptLifetime

7.3.8. getUsage .o

7.3.9. getUsage

7.3.10. getMechs

7.3.11. add

7.3.12. equals

7.3.13. Exanple dee .
7.4. public interface GSSCDntext

7.4.1 Static Constants

7.4.2 i ni t SecCont ext

7.4.3 accept SecCont ext

7.4.4. isEstablished

7.4.5. dispose

7.4.6 getVVapS|zeL|n1t

7.4.7 wWr ap . .

7.4.8 unwr ap

Upadhyay, et al. St andards Track

May 2018

36
36
37
38
38
39
39
40
40
41
42
43
43
44
45
45
46
46
47
47
47
47
47
48
48
49
50
50
50
51
51
51
51
52
52
52
52
53
54
54
55
56
56
57
57
58
58
59

[Page 4]

RFC 8353

NNNNNOONNNNNSNSNNSNSNNNONSNN

Upadhyay,

BAARARARARNRARAARRAARRARRARRARDS

gouoaoaoaoaoaooo o

00000

et al.

Java GSS- APl Updat e May 2018

getMC . . 60
verifyMC . 61
export . . 62
request Mut ual Aut h . 62
request Repl ayDet 63
request SequenceDet 63
request Cr edDel eg 63
request Anonynmity 64
r equest Conf 64
requestli nteg 64
requestLifetinme . 64
set Channel Bi ndi ng . 65
get CredDel egStat e . 65
get Mut ual Aut hSt at e 65
get Repl ayDet State . . 65
get SequenceDet State . 66
get AnonynmityState . 66
i sTransferabl e 66
i sProt Ready . 66
get Conf St at e 66
getlntegState . 67
getLifetine . 67
get Sr cNane 67
get Tar gNane . 67
getMech . . . 67
get Del egCred 68
islnitiator 68
Exanpl e Code 68
ic class MessageProp 70
Constructors . 70
get QOP 71
get Pri vacy . 71
get M nor St at us 71
get M nor Stri ng 71
set QOP . 71
setPri vacy . 72
i sDupli cat eToken 72
i sA dToken 72
i sUnseqToken 72
i sGapToken 72
set Suppl enent ar y St at es 72
i ¢ class Channel Bi ndi ng . 73
Constructors . 73
getlnitiatorAddr ess . 74
get Accept or Addr ess 74
get Appl i cati onDat a 74
equal s . . 75
St andards Track [Page 5]

RFC 8353 Java GSS- APl Updat e May 2018

7.7. public class Gd 15
7.7.1. Constructors 15
7.7.2. toString 716
7.7.3. equals 16
7.7.4. getDER 16
7.7.5. containedln . . . N 4

7.8. public class GSSExceptlon extends Exceptlon Y o
7.8.1. Static Constants 17
7.8.2. Constructors 80
7.8.3. getMpjor 8
7.8.4. getMnor 8
7.8.5. getMpjorString 81
7.8.6. getMnorString 81
7.8.7. getQutputToken 82
7.8.8. setMnor 82
7.8.9. toString 82
7.8.10. getMessage .. 82

8. Sanple Applications 83
8.1. Sinple GSS Context Initiator 83
8.2. Sinple GSS Context Acceptor . - V4

9. Security Considerations [

10. I ANA Considerations 9

11. Changes since RFC 5653 91

12. Changes since RFC 2853 93

13. References . . . P 1
13.1. Nornative References e
13.2. Informative References 95

Acknowl edgnents . 96

Authors’ Addresses ... 96

1. Introduction

Thi s docunent specifies Java | anguage bi ndings for the Generic
Security Services Application Programming Interface (GSS-APl) version
2. GSS-API version 2 is described in a | anguage-i ndependent format
in RFC 2743 [RFC2743]. The GSS-API allows a caller application to
authenticate a principal identity, delegate rights to a peer, and
apply security services such as confidentiality and integrity on a
per - message basi s.

This docunment and its predecessors, RFC 2853 [RFC2853] and RFC 5653

[RFC5653], |everage the work done by the working group (WG in the
area of RFC 2743 [RFC2743] and the C-bindings of RFC 2744 [RFC2744].
Wienever appropriate, text has been used fromthe C bindings docunent
(RFC 2744) to explain generic concepts and provide direction to the

i mpl enent ors.

Upadhyay, et al. St andards Track [Page 6]

RFC 8353 Java GSS- APl Updat e May 2018

The design goals of this APl have been to satisfy all the
functionality defined in RFC 2743 [RFC2743] and to provide these
services in an object-oriented nmethod. The specification also ains
to satisfy the needs of both types of Java application devel opers,
those who would |i ke access to a "systemw de" GSS- APl

i npl enentation, as well as those who would want to provide their own
"custont inplenentation.

A systemw de inplenentation is one that is available to all
applications in the formof a library package. It may be the
standard package in the Java runtinme environment (JRE) being used, or
it may be additionally installed and accessible to any application
via the CLASSPATH.

A custom i npl enentati on of the GSS-API, on the other hand, is one
that would, in nost cases, be bundled with the application during
distribution. It is expected that such an inplenentation would be
meant to provide for sone particular need of the application, such as
support for sone specific nmechani sm

The design of this APl also ains to provide a flexible framework to
add and manage GSS- APl nechani sms. GSS- APl | everages the Java

Crypt ography Architecture (JCA) provider nodel to support the
plugability of nechanisns. Mechani sns can be added on a systentwi de
basis, where all users of the framework will have them avail abl e.
The specification also allows for the addition of nmechani sns per

i nstance of the GSS-API

Lastly, this specification presents an APl that will naturally fit
within the operation environnent of the Java platform Readers are
assuned to be familiar with both the GSS-API and the Java platform

2. Notational Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in
BCP 14 [RFC2119] [RFCB174] when, and only when, they appear in all
capitals, as shown here

3. GSS-API (Operational Paradi gm

"CGeneric Security Service Application Progranm ng Interface, Version
2" [RFC2743] defines a generic security APl to calling applications.
It allows a communicating application to authenticate the user

associ ated with another application, to delegate rights to another
application, and to apply security services such as confidentiality
and integrity on a per-nessage basis.

Upadhyay, et al. St andards Track [Page 7]

RFC 8353 Java GSS- APl Updat e May 2018

There are four stages to using GSS-API:

)

2)

3)

The application acquires a set of credentials with which it may
prove its identity to other processes. The application’s
credentials vouch for its global identity, which may or nmay not be
related to any | ocal usernanme under which it nmay be running.

A pair of communicating applications establish a joint security
context using their credentials. The security context

encapsul ates shared state information, which is required in order
that per-nmessage security services may be provided. Exanples of
state information that m ght be shared between applications as
part of a security context are cryptographi c keys and nessage
sequence nunbers. As part of the establishnent of a security
context, the context initiator is authenticated to the responder
and may require that the responder is authenticated back to the
initiator. The initiator may optionally give the responder the
right to initiate further security contexts, acting as an agent or
del egate of the initiator. This transfer of rights is terned

"del egation" and is achieved by creating a set of credentials,
simlar to those used by the initiating application, but which rmay
be used by the responder.

A GSSCont ext object is used to establish and naintain the shared

i nformati on that nmakes up the security context. Certain
GSSCont ext methods will generate a token, which applications treat
as cryptographically protected, opaque data. The caller of such a
GSSCont ext method is responsible for transferring the token to the
peer application, encapsulated if necessary in an application-to-
application protocol. On receipt of such a token, the peer
application should pass it to a correspondi ng GSSCont ext mnet hod,
which will decode the token and extract the information, updating
the security context state information accordingly.

Per - message services are invoked on a GSSContext object to apply
ei ther:

integrity and data origin authentication, or
confidentiality, integrity, and data origin authentication

to application data, which are treated by GSS-APlI as arbitrary
octet strings. An application transnmtting a nmessage that it

wi shes to protect will call the appropriate GSSContext method
(getM C or wap) to apply protection before sending the resulting
token to the receiving application. The receiver will pass the
recei ved token (and, in the case of data protected by getMC, the

Upadhyay, et al. St andards Track [Page 8]

RFC 8353 Java GSS- APl Updat e May 2018

4.

acconpanyi ng nessage data) to the correspondi ng decodi ng net hod of
t he GSSContext interface (verifyMC or unwap) to renove the
protection and validate the data.

4) At the conpletion of a comunications session (which may extend
across several transport connections), each application uses a
GSSCont ext nmethod to invalidate the security context and rel ease
any system or cryptographic resources held. Miltiple contexts may
al so be used (either successively or sinultaneously) within a
si ngl e communi cati ons associ ation, at the discretion of the
applications.

Addi ti onal Controls

Thi s section discusses the OPTIONAL services that a context initiator
may request of the GSS-API before the context establishment. Each of
these services is requested by calling the appropriate nutator nethod
in the GSSCont ext object before the first call to init is perforned.
Only the context initiator can request context flags.

The OPTI ONAL servi ces defined are:

Del egation: The (usually tenporary) transfer of rights from
initiator to acceptor, enabling the acceptor to authenticate
itself as an agent of the initiator

Miut ual Aut hentication: In addition to the initiator authenticating
its identity to the context acceptor, the context acceptor SHOULD
al so authenticate itself to the initiator

Replay Detection: In addition to providing nessage integrity
servi ces, GSSContext per-nessage operations of getMC and wap
SHOULD i ncl ude nmessage nunbering information to enable verifyMC
and unwap to detect if a nmessage has been duplicated.

Qut - of - Sequence Detection: In addition to providi ng nessage
integrity services, GSSContext per-nessage operations (getM C and
wrap) SHOULD i ncl ude nessage sequencing information to enabl e
verifyM C and unwap to detect if a nessage has been received out
of sequence.

Anonynmous Aut hentication: The establishment of the security
context SHOULD NOT reveal the initiator’'s identity to the context
acceptor.

Some mechani sms may not support all OPTIONAL services, and sone
mechani sms may only support some services in conjunction with others.
The GSSContext interface offers query nethods to allow the

Upadhyay, et al. St andards Track [Page 9]

RFC 8353 Java GSS- APl Updat e May 2018

verification by the calling application of which services will be
avai l abl e fromthe context when the establishnent phase is conplete.

In general, if the security mechanismis capable of providing a
requested service, it SHOULD do so even if additional services mnust
be enabled in order to provide the requested service. |f the

mechani smis incapable of providing a requested service, it SHOULD
proceed wi thout the service |eaving the application to abort the
context establishnent process if it considers the requested service
to be mandatory.

Some mechani snms MAY specify that support for sonme services is
optional and that inplenmentors of the nechani sm need not provide it.
This is nost commonly true of the confidentiality service, often
because of legal restrictions on the use of data encryption, but it
may apply to any of the services. Such nmechanisns are required to
send at | east one token fromacceptor to initiator during context
est abli shnent when the initiator indicates a desire to use such a
service, so that the initiating GSS-APlI can correctly indicate

whet her the service is supported by the acceptor’s GSS-API.

4.1. Del egation

The GSS- APl allows del egation to be controlled by the initiating
application via the request CredDel eg nethod before the first call to
init has been issued. Sone nechani sns do not support del egation, and
for such nmechani sns, attenpts by an application to enable del egation
are ignored.

The acceptor of a security context, for which the initiator enabled
del egation, can check if del egation was enabl ed by using the

get CredDel egSt at e net hod of the GSSContext interface. |n cases when
it is enabled, the del egated credential object can be obtai ned by
calling the getDel egCred nmet hod. The obtai ned GSSCredenti al object
may then be used to initiate subsequent GSS-API security contexts as
an agent or delegate of the initiator. |If the original initiator’s
identity is "A" and the delegate’'s identity is "B", then, depending
on the underlying nmechanism the identity enbodi ed by the del egated
credential may be either "A" or "B acting for A"

For many mechani sns that support del egation, a sinple bool ean does
not provide enough control. Exanples of additional aspects of

del egation control that a nechani smnight provide to an application
are duration of delegation, network addresses from which del egation
is valid, and constraints on the tasks that nay be perforned by a
del egate. Such controls are presently outside the scope of the

GSS- APl . GSS- APl i npl ement ati ons supporting mechani sns of fering
addi tional controls SHOULD provi de extension routines that allow
these controls to be exercised (perhaps by nodifying the initiator’s

Upadhyay, et al. St andards Track [Page 10]

RFC 8353 Java GSS- APl Updat e May 2018

GSS- APl credential object prior to its use in establishing a
context). However, the sinple delegation control provided by GSS-API
SHOULD al ways be able to override other mechani smspecific del egation
controls. If the application instructs the GSSContext object that

del egation is not desired, then the inplenentati on MJUST NOT permt

del egation to occur. This is an exception to the general rule that a
mechani sm nay enabl e services even if they are not requested --

del egation may only be provided at the explicit request of the
application.

4. 2. Mut ual Aut henticati on

Usual |y, a context acceptor will require that a context initiator
authenticate itself so that the acceptor may nmake an access-control
decision prior to performing a service for the initiator. 1In sone
cases, the initiator may al so request that the acceptor authenticate
itself. GSS-APlI allows the initiating application to request this
nmut ual aut hentication service by calling the request Mutual Aut h net hod
of the GSSContext interface with a "true" paraneter before naking the
first call toinit. The initiating application is informed as to
whet her or not the context acceptor has authenticated itself. Note
that some nmechani sms may not support nutual authentication, and other
mechani sms nmay al ways perform nutual authentication, whether or not
the initiating application requests it. |n particular, nutua

aut hentication may be required by some nechanisns in order to support
replay or out-of-sequence nmessage detection, and for such mechani sns,
a request for either of these services will automatically enable

mut ual aut hentication

4.3. Replay and Qut-of - Sequence Detection

The GSS- APl MAY provide detection of m s-ordered nessages once a
security context has been established. Protection MAY be applied to
nmessages by either application, by calling either getMC or wap

nmet hods of the GSSContext interface, and verified by the peer
application by calling verifyMC or unwap for the peer’s GSSCont ext
obj ect.

The get M C net hod cal cul ates a crypt ographi c checksum (aut hentication
tag) of an application nessage, and returns that checksumin a token.
The applicati on SHOULD pass both the token and the message to the
peer application, which presents themto the verifyM C nethod of the
peer’s GSSCont ext object.

Upadhyay, et al. St andards Track [Page 11]

RFC 8353 Java GSS- APl Updat e May 2018

The wrap nethod cal cul ates a cryptographi c checksum of an application
nmessage, and places both the checksum and the nmessage inside a single
token. The application SHOULD pass the token to the peer

application, which presents it to the unwap nmethod of the peer’s
GSSCont ext object to extract the nmessage and verify the checksum

Either pair of routines nmay be capabl e of detecting out-of-sequence
message delivery or the duplication of nessages. Details of such

n s-ordered nessages are indicated through suppl ementary query

nmet hods of the MessageProp object that is filled in by each of these
routines.

A nmechani sm need not nmaintain a list of all tokens that have been
processed in order to support these status codes. A typica
nmechani sm mi ght retain information about only the nost recent "N

t okens processed, allowing it to distinguish duplicates and m ssing
tokens within the nost recent "N' nessages; the receipt of a token
ol der than the nost recent "N' would result in the isd dToken nethod
of the instance of MessageProp to return "true"

4. 4. Anonynous Authentication

In certain situations, an application may wish to initiate the

aut hentication process to authenticate a peer, without revealing its
own identity. As an exanple, consider an application providing
access to a database containing nmedical information and of fering
unrestricted access to the service. A client of such a service night
wi sh to authenticate the service (in order to establish trust in any
information retrieved fromit), but mght not wish the service to be
able to obtain the client’s identity (perhaps due to privacy concerns
about the specific inquiries, or perhaps sinply to avoid being placed
on mailing-lists).

In normal use of the GSS-API, the initiator’'s identity is made

avail able to the acceptor as a result of the context establishnent
process. However, context initiators may request that their identity
not be revealed to the context acceptor. Many nechani sns do not
support anonynous aut hentication, and for such mechani sns, the
request will not be honored. An authentication token will still be
generated, but the application is always inforned if a requested
service is unavail able, and has the option to abort context
establishnent if anonymity is valued above the other security
services that would require a context to be established.

In addition to informing the application that a context is

est abl i shed anonynously (via the i sAnonynous nethod of the GSSCont ext
class), the getSrcNane nmet hod of the acceptor’s GSSContext object

Upadhyay, et al. St andards Track [Page 12]

RFC 8353 Java GSS- APl Updat e May 2018

will, for such contexts, return a reserved internal-form nane,
defined by the inplementation.

The toString method for a GSSNane object representing an anonynous
entity will return a printable nanme. The returned value will be
syntactically distinguishable fromany valid principal nane supported
by the inplenentation. The associated nane-type Object ldentifier
(OD) will be an OD representing the value of NT_ANONYMOUS. This
name-type O D wll be defined as a public, static G d object of the
GSSNane cl ass. The printable form of an anonynous nane SHOULD be
chosen such that it inplies anonynmty, since this name nmay appear in,
for exanple, audit logs. For exanple, the string "<anonynmous>" ni ght
be a good choice, if no valid printable nanes supported by the

i npl enent ation can begin with "<" and end with ">"

When using the equal nethod of the GSSNane interface, and one of the
operands is a GSSNane i nstance representi ng an anonynmous entity, the
nmet hod MJST return "fal se”

4.5. Integrity and Confidentiality

If a GSSContext supports the integrity service, the getMc nethod may
be used to create nessage integrity check tokens on application
nessages.

I f a GSSContext supports the confidentiality service, the wap nmethod
may be used to encrypt application nmessages. Messages are
selectively encrypted, under the control of the setPrivacy nethod of
the MessageProp object used in the wap nethod. Confidentiality will
be applied if the privacy state is set to true.

4.6. Inter-process Context Transfer

GSS- APl v2 provides functionality that allows a security context to be
transferred between processes on a single machine. These are

i npl enent ed using the export nethod of GSSContext and a byte array
constructor of the same class. The nost conmon use for such a
feature is a client-server design where the server is inplenented as
a single process that accepts incoming security contexts, which then
| aunches child processes to deal with the data on these contexts. In
such a design, the child processes nust have access to the security
context object created within the parent so that they can use per-
message protection services and delete the security context when the
conmuni cati on session ends.

Since the security context data structure is expected to contain

sequencing information, it is inmpractical in general to share a
context between processes. Thus, the GSSContext interface provides

Upadhyay, et al. St andards Track [Page 13]

RFC 8353 Java GSS- APl Updat e May 2018

an export nethod that the process, which currently owns the context,
can call to declare that it has no intention to use the context
subsequently and to create an inter-process token containing

i nformati on needed by the adopting process to successfully recreate
the context. After successful conpletion of export, the origina
security context is nade inaccessible to the calling process by

GSS- APl, and any further usage of this object will result in
failures. The originating process transfers the inter-process token
to the adopting process, which creates a new GSSCont ext object using
the byte array constructor. The properties of the context are

equi valent to that of the original context.

The inter-process token MAY contain sensitive data fromthe origina
security context (including cryptographic keys). Applications using
inter-process tokens to transfer security contexts MJST take
appropriate steps to protect these tokens in transit.

| npl enentations are not required to support the inter-process
transfer of security contexts. Calling the isTransferable nethod of
the GSSContext interface will indicate if the context object is
transferabl e.

4.7. The Use of Inconplete Contexts

Some nechani sns nmay al l ow the per-nessage services to be used before
the context establishnent process is conplete. For exanple, a
mechani sm may include sufficient information in its initial context-
| evel tokens for the context acceptor to i medi ately decode nessages
protected with wap or getMC. For such a mechanism the initiating
application need not wait until subsequent context-I|evel tokens have
been sent and received before invoking the per-nessage protection
servi ces

An application can invoke the isProt Ready nethod of the GSSCont ext
class to determine if the per-nessage services are available in
advance of conplete context establishment. Applications wishing to
use per-nessage protection services on partially established contexts
SHOULD query this nmethod before attenpting to i nvoke wap or getMC.

Upadhyay, et al. St andards Track [Page 14]

RFC 8353 Java GSS- APl Updat e May 2018

5.

5.

5.

Cal l'i ng Conventi ons

Java provides the inplenmentors with not just a syntax for the

| anguage but al so an operational environment. For exanple, nenory is
aut omati cal | y managed and does not require application intervention.
These | anguage features have allowed for a sinpler APl and have | ed
to the elinmnation of certain GSS-API functions.

Moreover, the JCA defines a provider nodel that allows for

i mpl enent ati on-i ndependent access to security services. Using this
nodel , applications can seam essly switch between different

i npl enent ati ons and dynanically add new services. The GSS- AP
specification | everages these concepts by the usage of providers for
t he mechani sm i npl enent ati ons.

1. Package Nane

The classes and interfaces defined in this docunent reside in the
package called "org.ietf.jgss". Applications that wi sh to nake use
of this APl should inport this package nane as shown in Section 8.

2. Pr ovi der Franewor k

Java security APls use a provider architecture that all ows
applications to be inplenentation i ndependent and security API

i mpl enentations to be nodul ar and extensible. The
java.security.Provider class is an abstract class that a vendor
extends. This class maps various properties that represent different
security services that are available to the nanes of the actua
vendor cl asses that inplenment those services. Wen requesting a
service, an application sinply specifies the desired provider, and
the APl del egates the request to service classes available fromthat
provi der.

Usi ng the Java security provider nodel insulates applications from
i npl enentation details of the services they wish to use
Applications can switch between providers easily, and new providers
can be added as needed, even at runtine.

The GSS-API may use providers to find conponents for specific
underlying security nechanisns. For instance, a particul ar provider
m ght contain conponents that will allow the GSS-API to support the
Ker beros v5 nmechani sm [RFC4121], and another might contain conponents
to support the Sinple Public-Key GSS-API Mechani sm (SPKM [RFC2025].
By del egating nmechani smspecific functionality to the conponents
obt ai ned from providers, the GSS-API can be extended to support an
arbitrary list of mechanisns.

Upadhyay, et al. St andards Track [Page 15]

RFC 8353 Java GSS- APl Updat e May 2018

How t he GSS- APl |ocates and queries these providers is beyond the
scope of this docunent and is being deferred to a Service Provider
Interface (SPl) specification. The availability of such an SP
specification is not mandatory for the adoption of this AP
specification nor is it mandatory to use providers in the

i npl enentation of a GSS-API framework. However, by using the

provi der franmework together with an SPI specification, one can create
an extensible and inpl enentation-i ndependent GSS- APl framewor k.

5.3. Integer Types

Al'l nuneric values are declared as the "int" printive Java type.
The Java specification guarantees that this will be a 32-bit two's
conpl enent si gned nunber.

Throughout this API, the "bool ean" primtive Java type is used
wher ever a bool ean value is required or returned.

5.4. (Opaque Data Types

Java byte arrays are used to represent opaque data types that are
consurmed and produced by the GSS-API in the formof tokens. Java
arrays contain a length field that enables the users to easily
deternmne their size. The |anguage has autonatic garbage collection
that alleviates the need by devel opers to rel ease nenory and
sinplifies buffer ownership issues.

5.5. Strings

The String object will be used to represent all textual data. The
Java String object transparently treats all characters as two-byte
Uni code characters, which allows support for many locals. Al
routines returning or accepting textual data will use the String
obj ect.

5.6. (Object ldentifiers

An G d object will be used to represent Universal Object ldentifiers
(ODs). ODs are SO defined, hierarchically globally interpretable
identifiers used within the GSS-API framework to identify security
mechani sms and nane formats. The O d object can be created froma
string representation of its dot notation (e.g., "1.3.6.1.5.6.2") as
well as fromits ASN. 1 DER encoding. Methods are al so provided to
test equality and provide the DER representation for the object.

Upadhyay, et al. St andards Track [Page 16]

RFC 8353 Java GSS- APl Updat e May 2018

An inmportant feature of the Od class is that its instances are
immutable -- i.e., there are no nethods defined that allow one to
change the contents of an G d object. This property allows one to
treat these objects as "statics" without the need to perform copies.

Certain routines allow the usage of a default AD. A "null" val ue
can be used in those cases.

5.7. (Object ldentifier Sets

The Java bindings represent hject ldentifier sets as arrays of Gd
objects. Al Java arrays contain a length field, which allows for
easy mani pul ati on and reference.

In order to support the full functionality of RFC 2743 [RFC2743], the
O d class includes a nethod that checks for existence of an Od
object within a specified array. This is equivalent in functionality
to gss_test _oid set _nenber. The use of Java arrays and Java’'s

aut onati ¢ garbage collection has elimnated the need for the
followi ng routines: gss create enpty oid _set, gss rel ease oid_set,
and gss_add_oid_set_nenber. Java GSS-APlI inplenmentations will not
contain them Java's automatic garbage collection and the inmmutable
property of the O d object elimnates the menory nanagenent issues of
the C counterpart.

Whenever a default value for an Object Identifier set is required, a
"nul " value can be used. Please consult the detailed nethod
description for details.

5.8. Credentials

GSS- APl credentials are represented by the GSSCredential interface.
The interface contains several constructs to allow for the creation
of nmost common credential objects for the initiator and the acceptor.
Conmpari sons are perforned using the interface’s "equal s" nmethod. The
foll owi ng general description of GSS-API credentials is included from
the C- bindings specification [RFC2744]:

GSS- APl credentials can contain mechani smspecific principa

aut hentication data for multiple nmechanisms. A GSS-API credenti al
is conposed of a set of credential-elenents, each of which is
applicable to a single nmechanism A credential may contain at
nost one credential -el enent for each supported nmechanism A
credential -elenent identifies the data needed by a single

nmechani smto authenticate a single principal, and conceptual ly
contains two credential -references that describe the actua
mechani sm specific authentication data, one to be used by GSS-API
for initiating contexts, and one to be used for accepting

Upadhyay, et al. St andards Track [Page 17]

RFC 8353 Java GSS- APl Updat e May 2018

contexts. For mechani snms that do not distinguish between acceptor
and initiator credentials, both references would point to the sane
under | yi ng nechani smspecific authentication data.

Credential s describe a set of nechani smspecific principals and give
their holder the ability to act as any of those principals. Al
principal identities asserted by a single GSS-API credential SHOULD
belong to the sane entity, although enforcenent of this property is
an i nmplementation-specific matter. A single GSSCredential object
represents all the credential elenents that have been acquired.

The creation of a GSSContext object allows the value of "null" to be
specified as the GSSCredential input paranmeter. This will indicate a
desire by the application to act as a default principal. Wile

i ndi vi dual GSS- APl inplenentations are free to deternine such default
behavi or as appropriate to the nechanism the follow ng default
behavi or by these routines is RECOMENDED for portability:

For the initiator side of the context:

1) If there is only a single principal capable of initiating security
contexts for the chosen mechanismthat the application is
aut horized to act on behalf of, then that principal shall be used;
ot her wi se,

2) If the platform maintains a concept of a default network identity
for the chosen nmechanism and if the application is authorized to
act on behalf of that identity for the purpose of initiating
security contexts, then the principal corresponding to that
identity shall be used; otherw se,

3) If the platform maintains a concept of a default |ocal identity,
and provides a neans to map local identities into network
identities for the chosen nechanism and if the application is
aut horized to act on behalf of the network-identity inmge of the
default local identity for the purpose of initiating security
contexts using the chosen nechanism then the principa
corresponding to that identity shall be used; otherw se,

4) A user-configurable default identity should be used.
For the acceptor side of the context:
1) If there is only a single authorized principal identity capable of

accepting security contexts for the chosen nechani sm then that
principal shall be used; otherw se,

Upadhyay, et al. St andards Track [Page 18]

RFC 8353 Java GSS- APl Updat e May 2018

2) If the nmechanismcan determine the identity of the target
princi pal by exani ning the context-establishnment token processed
during the accept nmethod, and if the accepting application is
aut horized to act as that principal for the purpose of accepting
security contexts using the chosen nechanism then that principa
identity shall be used; otherw se,

3) If the mechani sm supports context acceptance by any principal, and
i f mutual authentication was not requested, any principal that the
application is authorized to accept security contexts under using
t he chosen nechani sm may be used; ot herwi se,

4) A user-configurable default identity shall be used.

The purpose of the above rules is to allow security contexts to be
established by both initiator and acceptor using the default behavior
whenever possible. Applications requesting default behavior are
likely to be nore portable across nmechani sns and i npl enentations than
ones that instantiate a GSSCredential object representing a specific
identity.

5.9. Cont ext s

The GSSContext interface is used to represent one end of a GSS-API
security context, storing state information appropriate to that end
of the peer conmunication, including cryptographic state information.
The instantiation of the context object is done differently by the
initiator and the acceptor. After the context has been instanti ated,
the initiator MAY choose to set various context options that will
deternm ne the characteristics of the desired security context. Wen
all the application-desired characteristics have been set, the
initiator will call the initSecContext nethod, which will produce a
token for consunption by the peer’s acceptSecContext nethod. It is
the responsibility of the application to deliver the authentication
token(s) between the peer applications for processing. Upon

conpl etion of the context-establishnent phase, context attributes can
be retrieved, by both the initiator and acceptor, using the accessor
nmet hods. These will reflect the actual attributes of the established
context and might not match the initiator-requested values. |[If any
retrieved attribute does not match the desired value but it is
necessary for the application protocol, the application SHOULD
destroy the security context and not use it for application traffic.
O herwise, at this point, the context can be used by the application
to apply cryptographic services to its data.

Upadhyay, et al. St andards Track [Page 19]

RFC 8353 Java GSS- APl Updat e May 2018

5.10. Authentication Tokens

A token is a caller-opaque type that GSS-APlI uses to nmintain
synchroni zati on between each end of the GSS-API security context.

The token is a cryptographically protected octet string, generated by
t he underlying nechani smat one end of a GSS-API security context for
use by the peer nechanismat the other end. Encapsulation (if
required) within the application protocol and transfer of the token
are the responsibility of the peer applications.

Java GSS- APl uses byte arrays to represent authentication tokens.
5.11. Inter-process Tokens

Certain GSS-API routines are intended to transfer data between
processes in multi-process prograns. These routines use a caller-
opaque octet string, generated by the GSS-APlI in one process for use
by the GSS-API in another process. The calling application is
responsi ble for transferring such tokens between processes. Note
that, while GSS-API inplenentors are encouraged to avoid placing
sensitive information within inter-process tokens, or to
cryptographically protect them many inplenentations will be unable
to avoid placing key material or other sensitive data within them

It is the application’s responsibility to ensure that inter-process
tokens are protected in transit and transferred only to processes
that are trustworthy. An inter-process token is represented using a
byte array enmtted fromthe export method of the GSSContext
interface. The receiver of the inter-process token would initialize
a GSSContext object with this token to create a new context. Once a
context has been exported, the GSSContext object is invalidated and
is no |longer avail able.

5.12. Error Reporting

RFC 2743 [RFC2743] defined the usage of mmjor and m nor status val ues
for the signaling of GSS-API errors. The major code, also called the
GSS status code, is used to signal errors at the GSS-API | evel

i ndependent of the underlying nechanisn(s). The ninor status val ue
or Mechani sm status code, is a nechani smdefined error val ue

i ndi cating a mechani smspecific error code.

Java GSS- APl uses exceptions inplenented by the GSSException class to
signal both nminor and najor error values. Both nechani smspecific
errors and GSS-API |evel errors are signaled through instances of
this class. The usage of exceptions replaces the need for mgjor and
m nor codes to be used within the APl calls. The GSSException cl ass
al so contains nethods to obtain textual representations for both the

Upadhyay, et al. St andards Track [Page 20]

RFC 8353 Java GSS- APl Updat e May 2018

maj or and ninor val ues, which is equivalent to the functionality of
gss_di splay_status. A GSSException object MAY al so i nclude an out put
token that SHOULD be sent to the peer.

If an exception is thrown during context establishnment, the context
negoti ati on has failed and the GSSCont ext object MJST be abandoned.
If it is thrown in a per-nessage call, the context MAY remai n useful

5.12.1. GSS Status Codes

GSS status codes indicate errors that are independent of the
under | yi ng nechani sn(s) used to provide the security service. The
errors that can be indicated via a GSS status code are generic API
routine errors (errors that are defined in the GSS-API

specification). These bindings take advantage of the Java exceptions
mechani sm thus elimnating the need for calling errors.

A GSS status code indicates a single fatal generic APl error fromthe
routine that has thrown the GSSException. Using exceptions announces
that a fatal error has occurred during the execution of the method.
The GSS- APl operational nodel also allows for the signaling of

suppl enentary status information fromthe per-nessage calls. These
need to be handled as return val ues since using exceptions is not
appropriate for informatory or warning-like informati on. The nethods
that are capabl e of produci ng supplenentary infornmation are the two
per - nessage net hods GSSContext.verifyM C() and GSSCont ext.unw ap().
These nethods fill the supplenentary status codes in the MessageProp
obj ect that was passed in.

A GSSException object, along with providing the functionality for
setting the various error codes and translating theminto textua
representation, also contains the definitions of all the nuneric
error values. The following table lists the definitions of error
codes:

Upadhyay, et al. St andards Track [Page 21]

RFC 8353 Java GSS- APl Updat e May 2018

Tabl e: GSS St atus Codes

e e S o e e e +
| Narne | Value | Meaning |
o e e e Fomm - o e e e e e e e e e e e e e e e e +
BAD_BI NDI NGS 1 I ncorrect channel bindings were
suppl i ed.
BAD MECH 2 An unsupported nmechani sm was
request ed.
BAD NAME 3 An invalid name was supplied
BAD_NAMETYPE 4 A supplied name was of an
unsupported type.
BAD STATUS 5 An invalid status code was
suppl i ed.
BAD M C 6 A token had an invalid MC
CONTEXT_EXPI RED 7 The context has expired.
CREDENTI ALS _EXPI RED 8 The referenced credentials have
expired.
DEFECTI VE_CREDENTI AL 9 A supplied credential was invalid.
DEFECTI VE_TOKEN 10 A supplied token was invalid.

10		
FAI LURE	11	Mscellaneous failure, unspecified

| | | at the GSS-API |evel.

NO_CONTEXT 12 Invalid context has been supplied

NO_CRED 13 No credentials were supplied, or
the credentials were unavail abl e
or inaccessible.

BAD_QOP 14 The quality of protection (QOP)
requested could not be provided.

UNAUTHORI ZED 15 The operation is forbidden by the
| ocal security policy.

UNAVAI LABLE 16 The operation or option is
unavai | abl e.

DUPLI CATE_ELEMENT 17 The requested credential el enent
al ready exists.

NAVE_NOT_IWN 18 The provi ded nane was not a
nmechani sm nane.

e e e e e e oo Fom e e oo e e e e e e e e e e e eaaa +

Upadhyay, et al. St andards Track [Page 22]

RFC 8353 Java GSS- APl Updat e May 2018

The followi ng four status codes (DUPLI CATE TOKEN, OLD TOKEN

UNSEQ TOKEN, and GAP_TOKEN) are contained in a GSSException only if
detected during context establishnment, in which case it is a fata
error. (During per-nessage calls, these values are indicated as
suppl enentary informati on contained in the MessageProp object.) They

are:
e e e oo Fomm e oo e e e e e e e e e e e e e e mee s +
| Nane | Value | Meaning |
B [S, e +
| DUPLI CATE_TOKEN | 19 | The token was a duplicate of an earlier

		version.
OLD _TCKEN	20	The token's validity period has
		expired.
UNSEQ TOKEN	21	Alater token has al ready been
		processed.
GAP_TCKEN	22	The expected token was not received.
S [SR oo s o e e e e e e e e e e e e oo oo - +

The GSS maj or status code of FAILURE is used to indicate that the
under | yi ng nechani sm detected an error for which no specific GSS
status code is defined. The mechani smspecific status code can
provi de nore details about the error

The different najor status codes that can be contained in the
GSSException object thrown by the nmethods in this specification are
the same as the major status codes returned by the correspondi ng
calls in RFC 2743 [RFC2743].

5.12.2. Mechani sm Specific Status Codes

Mechani sm specific status codes are comunicated in two ways: they
are part of any GSSException thrown fromthe mechani smspecific |ayer
to signal a fatal error, or they are part of the MessageProp object
that the per-nmessage calls use to signal non-fatal errors

A default value of 0 in either the GSSException object or the
MessageProp object will be used to represent the absence of any
nmechani sm speci fic status code

5.12.3. Supplenmentary Status Codes

Suppl enentary status codes are confined to the per-nessage nethods of
t he GSSContext interface. Because of the informative nature of these
errors, it is not appropriate to use exceptions to signal them

I nstead, the per-nessage operations of the GSSContext interface
return these values in a MessageProp object.

Upadhyay, et al. St andards Track [Page 23]

RFC 8353 Java GSS- APl Updat e May 2018

The MessageProp cl ass defines query nmethods that return bool ean
val ues indicating the foll owi ng suppl enentary states:

Tabl e: Suppl ementary Status Methods

Fom e e e oo oo o +
| Method Name | Meaning when "true" is returned |
o e a oo o o o eee s +
| isDuplicateToken | The token was a duplicate of an earlier token.

isd dToken	The token’s validity period has expired.
isUnseqToken	A later token has al ready been processed.
isGapToken	An expected per-nessage token was not
	received.
o e a oo o o o eee s +

A "true" return value for any of the above nethods indicates that the
token exhi bited the specified property. The application MJST
determi ne the appropriate course of action for these suppl enentary
val ues. They are not treated as errors by the GSS-API.

5.13. Nanmes

A name is used to identify a person or entity. GSS-APlI authenticates
the rel ationship between a nane and the entity claimng the nane.

Since different authentication nmechani sns may enpl oy different
nanespaces for identifying their principals, GSS-APlI's naning support
is necessarily conplex in multi-mechani smenvironnents (or even in
some si ngl e- nechani sm envi ronnments where the underlyi ng nechani sm
supports nultipl e nanmespaces).

Two di stinct conceptual representations are defined for nanes:

1) A GSS-API formrepresented by inplenentations of the GSSName
interface: A single GSSNane object MAY contain multiple nanmes from
di fferent nanespaces, but all nanmes SHOULD refer to the sane
entity. An exanple of such an internal name would be the nane
returned froma call to the get Nane nethod of the GSSCredenti al
interface, when applied to a credential containing credentia
el ements for multiple authentication mechani sms enpl oyi ng
di fferent nanespaces. This GSSNane object will contain a distinct
nane for the entity for each authentication nmechani sm

For GSS- APl inplenentations supporting nultiple nanmespaces,

GSSNane i npl ement ati ons MJUST contain sufficient information to
determ ne the namespace to which each pr