org.apache.spark.ml.regression
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.
Param for features column name.
Param for features column name.
Criterion used for information gain calculation (case-insensitive).
Criterion used for information gain calculation (case-insensitive). Supported: "variance". (default = variance)
Param for label column name.
Param for label column name.
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be >= 2 and >= number of categories in any categorical feature. (default = 32)
Maximum depth of the tree (>= 0).
Maximum depth of the tree (>= 0). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)
Minimum information gain for a split to be considered at a tree node.
Minimum information gain for a split to be considered at a tree node. Should be >= 0.0. (default = 0.0)
Minimum number of instances each child must have after split.
Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1. (default = 1)
Param for prediction column name.
Param for prediction column name.
Param for random seed.
Param for random seed.
Param for Column name for the biased sample variance of prediction.
Param for Column name for the biased sample variance of prediction.
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params.
Subclasses should implement this method and set the return type properly.
See defaultCopy()
.
Explains a param.
Explains a param.
input param, must belong to this instance.
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
Explains all params of this instance.
Explains all params of this instance. See explainParam()
.
extractParamMap
with no extra values.
extractParamMap
with no extra values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Fits a model to the input data.
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
input dataset
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
fitted models, matching the input parameter maps
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
input dataset
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
fitted model
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
input dataset
the first param pair, overrides embedded params
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
fitted model
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
Gets the default value of a parameter.
Gets the default value of a parameter.
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
Gets a param by its name.
Gets a param by its name.
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
Saves this ML instance to the input path, a shortcut of write.save(path)
.
Saves this ML instance to the input path, a shortcut of write.save(path)
.
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
Returns an MLWriter
instance for this ML instance.
Returns an MLWriter
instance for this ML instance.
Specifies how often to checkpoint the cached node IDs.
Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10)
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
If false, the algorithm will pass trees to executors to match instances with nodes.
If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)
Maximum memory in MB allocated to histogram aggregation.
Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)
Decision tree learning algorithm for regression. It supports both continuous and categorical features.